Abstract
The aim of present work is theoretical analysis of high values of reinforcement degree of nanocomposites polyurethane/carbon nanotube. For this two micromechanical models were used, showing identical results. The indicated models demonstrated, that densely-packed high-modulus interfacial regions, which serve the same reinforcing element of nanocomposite structure, as and nanofiller (carbon nanotubes) actually. The formation of interfacial regions defines by strong interactions polymer matrix – nanofiller. This means that nanofiller efficiency is controlled by its ability to generate densely-packed interfacial regions. It is important also to point out, that any micromechanical model, including mixtures rule, describes correctly modulus of elasticity of polymer nanocomposites, if in it real, but not nominal, characteristics of nanofiller were used. The content of interfacial regions in nanocomposite is controlled by structure of nanofiller. This allows to obtain important practical conclusion – for realization maximum degree of reinforcement it is necessary to cause structure of nanofiller, allowing to generate greatest content of interfacial regions. Absence of interfacial regions results to reduction of modulus of elasticity of nanocomposite in comparison with matrix polymer.
Publisher
Izdatel'skii dom Spektr, LLC
Reference15 articles.
1. Eletskiy A. V. (2007). Mechanical properties of carbon nanostructures and materials based on them. Uspekhi fizicheskih nauk, Vol. 177, (3), pp. 234 – 274. [in Russian language]
2. Schaefer D. W., Justice R. S. (2007). How Nano are Nanocomposites? Macromolecules, Vol. 40, 24, pp. 8501 – 8517.
3. Koerner H., Liu W., Alexander M. et al. (2005). Deformation – Morphology Correlations in Electrically Conductive Carbon Nanotube – Thermoplastic Polyurethane Nanocomposites. Polymer, Vol. 46, (12), pp. 4405 – 4420.
4. Chen Q., Saltiel C., Manickavasagam S. et al. (2004). Aggregation Behavior of Single-walled Carbon Nanotubes in Dilute Aqueos Suspension. Journal of Colloid and Interface Science, Vol. 280, (1), pp. 91 – 97.
5. Zhao C., Hu G., Zhang S. et al. (2005). Synthesis and Characterization of Multi-walled Carbon Nanotubes Reinforced Polyamide-6 Via in Situ Polymerization. Polymer, Vol. 46, 14, pp. 5125 – 5132.