OVERVIEW OF CANDIDATES FOR QUANTUM-RESISTANT CIPHERS

Author:

Kurysheva A. A.

Abstract

This article describes the main trends in the development of cryptography, in particular, the need for active research in the field of postquantum cryptography. The purpose of the article was to review the latest trends in the field of post-quantum cryptography, due to the emergence of quantum algorithms, in order to reflect the current problems arising in the field of modern cryptography. The main method of research is the analysis of scientific literature for the period from 2016 to 2022. The use of quantum computer and quantum algorithms will significantly reduce the time of cracking keys with encryption and solve some types of cryptographic hash functions, which will lead to a significant increase in the length of keys and a decrease in performance. Due to the great economic influence of the USA, it is necessary to pay attention to the post–quantum NIST contests: from the algorithms under consideration, lattice-based algorithms will be standardized, which are the most reliable and efficient in terms of performance according to NIST, however, in order not to rely only on this type of algorithms, NIST selected alternative algorithms–isogeny–based, code–based, hash–based. So, there is a need to conduct research on the search for post-quantum algorithms of various types, which is confirmed by various NIST competitions. Post-quantum algorithms based on the computational difficulty of solving systems of many quadratic equations with many variables are also effective, such algorithms have not been considered by NIST, but they are relevant for further research. Since updating protocols, schemes and infrastructure objects must be carried out together with the introduction of new cryptographic algorithms, the replacement of currently used cryptographic algorithms can be very destructive and take decades, re-encryption with such a new algorithm of stored information and keys can also be used.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Materials Science

Reference15 articles.

1. Tokareva N. N. (2012). Symmetric cryptography. A brief course: textbook. Novosibirsk: Novosibirskiy gosudarstvenniy universitet. [in Russian language]

2. Lovenetskaya E. I. (2019). Mathematical basics of cryptography: Lecture texts for students of the specialty 1-98 01 03 "Software for information security of mobile systems". Minsk: BGTU. [in Russian language]

3. Grayms R. A. (2020). The apocalypse of cryptography. Moscow: DMK-Press. [in Russian language]

4. Komarova A. V., Korobeynikov A. G. (2019). Analysis of the main existing post-quantum approaches and electronic signature schemes. Voprosy kiberbezopasnosti, 30(2), pp. 58 – 68. [in Russian language]

5. Souppaya M., Polk W. and Barker W. (2021). Getting Ready for Post-Quantum Cryptography: Exploring Challenges Associated with Adopting and Using Post-Quantum Cryptographic Algorithms. National Institute of Standards and Technology. Gaithersburg. Available at: https://doi.org/10.6028/NIST.CSWP.04282021 (Accessed: 01.11.2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3