INTELLIGENT APPROACH FOR DIAGNOSIS ELECTRICAL EQUIPMENT OF INDUSTRIAL FACILITIES

Author:

Kolodenkova A. E.,Vereshchagina S. S.

Abstract

This paper is devoted to actual problem of ensuring of trouble-free functioning and a high level of fault tolerance of industrial facilities’ electrical equipment (EE) by diagnosing them during their operation. However, when diagnosing equipment, a number of challenges arise related to the following problems: a large number of monitored parameters, the presence of not only statistical information but the values of linguistic variables that are used by staff on duty, insufficient and incomplete input information. Proposed approach to diagnosing EE based on a composition of fuzzy cognitive model with a fuzzy vertices, links and fuzzy-functional cognitive model with functional links for generating intermediate information, and as well as fuzzy-production model of an upper level for taking final diagnostics decisions. The proposed approach is based on the functional model of EE diagnosing in IDEF0 notation which reflects the sequence of all necessary functions related to the diagnosing and provides the identification of the key data flows and a more comprehensive understanding of the process. The paper also provides a formulation of the fuzzy-set method that is based on the construction of functional dependencies formed in clear mapped set “the occurrence frequency of for equipment's dangerous situation”. This method’s novelty lies in the new formulation of the problem in accordance with the latest scientific achievements and its solution that was not previously considered in the well known sources of literature. The suggested method is allows to calculating the predicted values of controlled parameters of EE in case of statistic and fuzzy source data. The proposed approach to the EE diagnosis at industrial objects makes it possible to improve the accurate and complete EE diagnosis through the knowledge of the staff on duty, thereby resulting in timely repair and maintenance.

Publisher

Izdatel'skii dom Spektr, LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling Dynamics of Industrial Equipment Technical Condition;Lecture Notes in Mechanical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3