SERVERLESS COMPUTATIONS RESOURCE SCHEDULING BASED ON DATA DEPENDENCY

Author:

Kukushkin D. I.,Antonenko V. A.

Abstract

The serverless computing model is becoming quite widespread. This model allows developers to create flexible and fault tolerant applications with an attractive billing model. The increasing complexity of serverless functions has led to the necessity to use serverless workflows – serverless functions invoking other serverless functions. However, such concept imposes certain requirements on the serverless functions that make distributed computations. The overhead of transferring data between serverless functions can significantly increase the execution time of a program using this approach. One way to reduce overhead is to improve serverless scheduling techniques. This paper discusses an approach to scheduling serverless computations based on data dependency analysis. We propose to divide the problem of planning of the computation of a composite serverless function into three stages. For each stage we provide a description by a mathematical model. We carried out a review of algorithms used to schedule resources by compilers and in parallel computing in multiprocessor systems to determine the best algorithm to implement in a prototype scheduler. For each algorithm, it was specified how it could be used for resource scheduling in serverless platforms. We provide a description of the developed prototype based on the Fission serverless platform. The prototype implements the critical path heuristic. It is shown that the improvements can significantly reduce the execution time up to two times for some types of serverless functions.

Publisher

Izdatel'skii dom Spektr, LLC

Reference19 articles.

1. Qian Zh. et al. (2012). MadLINQ: Large­Scale Distributed Matrix Computation for the Cloud. EuroSys’2012: 7th ACM European Conference on Computer Systems. Berne. Available at: https://www.microsoft.com/en-us/research/wp-content/uploads/2012/04/euro135-qian.pdf (Accessed: 01.10.2021). DOI 10.1145/2168836.2168857

2. Shankar V. et al. (2018). Numpywren: Serverless Linear Algebra. Available at: https://www2.eecs.berkeley.edu/ Pubs/TechRpts/2018/EECS-2018-137.pdf (Accessed: 01.10.2021).

3. AWS Step Functions. Intuitive workflows for modern applications. Available at: https://aws.amazon.com/ru/step-functions/ (Accessed: 01.10.2021). [in Russian language]

4. Azure Durable Functions. Available at: https://docs.microsoft.com/ru-ru/azure/azure-functions/durable/ durable-functions-overview (Accessed: 01.10.2021). [in Russian language]

5. Google. Cloud Composer. Available at: https://cloud.google.com/composer (Accessed: 01.10.2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3