SYSTEM ANALYSIS IN HIERARCHICAL INTELLIGENT MULTI-AGENT SYSTEMS

Author:

Simankov V. S.,Dubenko Yu. V.

Abstract

The system analysis of the hierarchical intelligent multi-agent system in general, as well as its main structural unit, the intelligent agent, its major subsystems identified. As part of the analysis of the computer vision subsystem, it was concluded that the considered sources have insufficiently worked out issues related to the processing of occlusions, with the automation of the process of reconstruction of three-dimensional scenes, with the implementation of the processing of an unstructured set of images. The structure of the block for the reconstruction of three-dimensional scenes is proposed, the implementation of which is aimed at eliminating the indicated problems characteristic of the machine vision subsystem. The analysis of the main methods of implementing unsupervised learning is carried out, based on the results of which it is concluded that it is advisable to use reinforcement learning when implementing systems of this type. Such types of reinforcement learning as hierarchical reinforcement learning and multi-agent reinforcement learning are considered. A method for segmentation of macro actions is proposed, based on the implementation of clustering by the method of label propagation, in which the number of transitions is formalized in the form of weight coefficients of edges.

Publisher

Izdatel'skii dom Spektr, LLC

Reference19 articles.

1. Simankov V. S. (2002). Automation of system studies. Krasnodar: Izdatel'stvo KubGTU. [in Russian language]

2. Rassel S., Norvig P. (2006). Artificial Intelligence. Modern approach. 2nd ed. Moscow: Vil'yams. [in Russian language]

3. Shen S. (2013). Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes. IEEE Transactions on Image Processing (TIP), pp. 1901 – 1914.

4. Hu X., Mordohai P. (2012). Least Commitment, Viewpoint-Based, Multi-View Stereo. 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, pp. 531 – 538. Zurich.

5. He K. et al. (2018). Mask R-CNN. Computer Vision and Pattern Recognition. Available at: https://arxiv.org/abs/1703.06870 (Accessed: 01.02.2021).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3