Author:
Starkov A. V.,Fedorov A. V.,Zay Yar Win
Abstract
The high accuracy and stability of Global Navigation Satellite System (GLONASS) consumer characteristics allows us to consider it as the basis of coordinate-time and navigation support for regional consumers. At the same time, one of the key factors influencing their choice of the preferred navigation system is to ensure the required levels of accuracy, availability and continuity of the radio navigation field in conditions of complex terrain, urban development and in areas with a high vegetation index. In this sense, the introduction of additional spacecraft into the GLONASS orbital constellation will increase its competitiveness. The article presents a methodology for building software analysis tools options build orbital groups, which allows you to explore the options of structures high-orbit segment of the principles and methods of their construction in order to effectively ensure implementation of navigation services, to analyze the deterioration of the quality of functional capabilities of high-orbit space of the complex due to the deformation under the influence of disturbing factors of various types and build a strategy for correction of motion of spacecraft. The composition and structure of software and mathematical support are proposed. Presents principles of organization and brief description of the software modules comprising: a module to determine the parameters of the perturbed uncontrolled motion of navigation satellites orbital constellation on the interval active life, module to evaluate degradation of functionality for advanced GLONASS and module support decision-making on strategies for correction of navigation satellites by determining the required reserves of the characteristic velocity.
Publisher
Izdatel'skii dom Spektr, LLC
Reference5 articles.
1. Karutin S. N., Panov S. A., Bolkunov A. I. et al. (2019). GLONASS system development strategy. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal «Polet», (10), pp. 7 – 20. [in Russian language]
2. Meshcheryakov V. M., Braginets V. F., Suhoy Yu. G. (2018). The architecture of the GLONASS orbital constellation, which ensures the global fulfillment of promising requirements for the average value of the spatial geometric factor. Inzhenerniy zhurnal: nauka i innovatsii, (10). [in Russian language]
3. Malyshev V. V., Starkov A. V., Fedorov A. V. (2012). Program-simulating complex for working out dynamic operations conducting means for spacecrafts. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, (9), pp. 7 – 12. [in Russian language]
4. Kozorez D. A., Krasil'shchikov M. N., Kruzhkov D. M. (2015). Computer simulation of the spacecraft insertion process into geostationary orbit by electric propulsion system. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, 135(9), pp. 9 – 15. [in Russian language]
5. Zay Yar Win, Malyshev V. V., Bobronnikov V. T., Starkov A. V. (2020). The Joint Solution of Problem of Evasion and Keeping in a Neighborhood Reference Orbit. Advances in the Astronautical Sciences, Vol. 168. California: Univelt Incorporated.