AUTOMATIC ARRHYTHMIA DETECTION BASED ON THE ANALYSIS OF ELECTROCARDIOGRAMS WITH DEEP LEARNING

Author:

Shchetinin E. Yu.

Abstract

According to the World Health Organization, cardiovascular diseases (CVD) are one of the most common causes of death in the world. The most effective clinical method for visualizing the cardiac electrical activity is electrocardiography (ECG). Automated ECG analysis has been of great interest in the medical researches. The problem of automated detection of cardiac arrhythmias may be reduced to the ECG signals classification. To solve this task such methods were used as Hidden Markov Models (HMM), discrete wavelet transforms (DWT), support vector machine (SVM) etc. Now days, the deep learning models began to play the major role in solving this problem. In this paper, for the classification of ECG signals, a number of models of deep neural networks, including deep convolutional, recurrent based on short-term long memory have been developed and implemented. To improve the classification accuracy of individual classes of the studied data, the CNN-LSTM deep model was built, which combines convolutional and recurrent networks. In addition the following machine learning algorithms were used for ECG signals classification: support vector machine (SVM), decision trees (DT), random forest (RF) and extreme gradient boosting (XGB). To test the performance of the proposed models, MIT-BIH database was used, a freely available dataset that is widely used to evaluate the effectiveness of ECG signal classification algorithms. The results of a comparative analysis of various algorithms for the quality of classification for individual classes showed that machine learning algorithms classify classes with a large volume of samples well. For example, SVM and DT classify samples from class N and Q with an accuracy of 92 and 97%, respectively, while samples from classes S and F are classified with much worse accuracy of 63%. At the same time, analyzing and comparing the performance of various neural network models based on the obtained estimates of the classification accuracy, it can be argued that CNN LSTM model allows not only a high classification accuracy of 99.37%, but also high values of other indicators of classification quality, such as F1- metric, precision, and recall.The proposed algorithms for the automated detection of cardiac arrhythmias can be applied in biomedical applications that analyze the electrocardiogram and help physicians diagnose cardiac arrhythmias more accurately.

Publisher

Izdatel'skii dom Spektr, LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ON AUTOMATIC DETECTION OF ANOMALIES IN ELECTROCARDIOGRAMMS WITH GENERATIVE MACHINE LEARNING;Vestnik komp'iuternykh i informatsionnykh tekhnologii;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3