Author:
Evdokimenkov V. N.,Toporov N. B.,Krasilshchikov M. N.,Anisimov K. S.,Sypalo K. I.
Abstract
The article demonstrates both architecture and software of the automated information – analytical support system, intended for implementation of multidisciplinary aeronautical engineering procedure. The system discussed should generate as a first approximation the design of the prospective aircraft, which could be implemented, considering actual scientific and technical level of aeronautical engineering. In case of impossibility to develop aircraft according to corresponding multidisciplinary requirements, basing on accumulated scientific and technical groundwork, it is necessary to determine priority solutions, which could provide development of discussed prospective aircraft. Implementation of described above opportunities is provided due to utilization of three problem-oriented blocks (DSS – decision support systems): DSS1 provides generation of the so called conceptual model of aircraft design problem, DSS2 generates analytical model of aircraft design problem and controls calculation procedures by generation of alternative versions of requirements applying to prospective aircraft, being developed, DSS3 provides automated support of generated aeronautical engineering solutions estimation in order to select most acceptable one. The article contains description of software, which is basis for solution of all above discussed problems, as well as approach of these problems solution as optimization ones. The article contains also result of developed both methods and software utilization applying to prospective transport aircraft design.
Publisher
Izdatel'skii dom Spektr, LLC
Subject
General Materials Science
Reference19 articles.
1. Anisimov K. S., Evdokimenkov V. N., Krasil'shchikov M. N., Sypalo K. I., Toporov N. B. (2022). Optimization of the process of improving aviation complexes based on the concept of functional design. Izvestiya RAN. Teoriya i sistemy upravleniya, (1), pp. 105 – 123. [in Russian language]
2. Evdokimenkov V. N., Toporov N. B., Vavilov D. S. (2022). Optimizing the Preliminary Design Profile of an Aircraft. Russian Engineering Research, Vol. 42 (6), pp. 599 – 602.
3. Protasov V. Yu. (2009). Convex analysis. Moscow: MGU. [in Russian language]
4. Yur'eva A. A. (2014). Mathematical programming: textbook. Saint Petersburg: Izdatel'stvo «Lan'». [in Russian language]
5. Belousova V. I., Ermakova G. M., Mihaleva M. M., Shapar' Yu. V., Shestakova I. A. (2016). Higher mathematics: textbook. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta. [in Russian language]