RENDERING OF INHOMOGENEOUS VOLUMES USING PERTURBATION FUNCTIONS

Author:

Vyatkin S. I.,Dolgovesov B. S.

Abstract

Modeling of light transmission in heterogeneous volumes is of great importance in many fields, such as medical imaging, scientific visualization and synthesis of realistic images. Visual effects use complex three-dimensional structures such as smoke and clouds. However, modeling light transmission requires many calculations. For example, Monte-Carlo methods, which are based on path tracing, require the construction of a huge number of light paths. At the same time, each light path consists of thousands of scattering parts. A method for rendering inhomogeneous volumes using perturbation functions is presented. An approach is proposed for sampling light transmission paths in inhomogeneous media. The approach is based on the radiation transfer equation, using the integral formulation of the direct scattering algorithm. Bounding shells based on perturbation functions are used. To speed up calculations an inhomogeneous medium is divided into homogeneous and residual parts. The residual part is the difference between an inhomogeneous and homogeneous medium. For a homogeneous part light transmission paths are constructed in an analytical form. Next, the path-tracing algorithm is used. Samples in the light transmission path in the homogeneous and residual parts are made separately. This minimizes the costly calculations of direct scattering coefficients that change when traversing space. The method has advantages in comparison with approaches using an octal tree, with a large volume resolution the efficiency of calculations increases. The results of the work are integrated into the path tracer. Objects based on perturbation functions as an acceleration structure are used. The empty space is determined and approximate local extremes of the base volumes are stored. Objects based on perturbation functions adapt to volume uniformity. Voluminous data sets based on voxels are stored. Performance is compared using the number of queries, visualization time, root mean square error and metrics, that is, the search in units of variance.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VOLUMETRIC LIGHT TRANSFER IN FUNCTIONALLY DEFINED SCENES;Vestnik komp'iuternykh i informatsionnykh tekhnologii;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3