INVESTIGATION OF AN OPTOELECTRONIC SYSTEM FOR DETECTING SMALL-SIZED AND INCONSPICUOUS OBJECTSUNDER THE INFLUENCE OF GEOMETRIC NOISE OF A MATRIX PHOTODETECTOR

Author:

Makhov V. E.,Shirobokov V. V.,Emelyanov A. V.,Potapov A. I.

Abstract

The basis for reducing the accuracy of obtaining coordinate and non-coordinate information in an optical-electronic system with a matrix photo detector is geometric noise caused by uneven sensitivity and topology of the photodiode matrix. The presented mathematical model of a matrix photodetector based on the geometric array of photodiodes takes into account the main geometric parameters of the topology of the photodiode matrix. The questions of the accuracy of determining coordinates for small-sized and hardly noticeable light objects comparable to the size of a raster by the method of continuous wavelet transforms of signals from a photodiode array are considered. The possibility of geometric noise filtering by the method of continuous wavelet transform is shown by excluding from the scalogram the range of wavelet transform scales corresponding to the period of the geometric raster. It is shown that the algorithms of continuous wavelet transforms provide an increase in the accuracy of extracting the information component of small-sized and inconspicuous objects observed by an optoelectronic system with a matrix photodetector. A software prototype in the NI LabVIEW application development environment is presented. A technique has been developed for carrying out computational experiments to estimate the accuracy of determining the coordinate depending on the position of a small-sized light object relative to the topological raster of a matrix photodetector, as well as to estimate the detection sensitivity at a given noise level of photodiodes. An assessment of the accuracy of obtaining coordinate and non-coordinate information by a matrix photodetector under the influence of geometric noise has been carried out. It has been established that the filtering of geometric noise provides an increase in the detectivity of the optoelectronic system for detecting small-sized and inconspicuous light objects by more than one and a half times.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Materials Science

Reference13 articles.

1. Gromilin G. I., Ivanov V. A., Kosyh V. P., Popov S. A. (2016). Features of the scanning process using a matrix photodetector in the VZN mode. Vychislitel'nye tekhnologii, Vol. 21, (1), pp. 50 – 69. Institut vychislitel'nyh tekhnologiy SO RAN. [in Russian language]

2. Holst Gerald C., Lomheim Terrence S. (2011). CMOS/CCD Sensors and Camera Systems. Spie: Holst Publications.

3. Zapryagaeva L. A. (2017). Applied Optics. Part 1. Introduction to the theory of optical systems: textbook for universities. Moscow: MIIGAiK. [in Russian language]

4. Born M., Vol'f E. (1973). Fundamentals of optics. 2nd ed. Moscow: Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury. [in Russian language]

5. Pustynskiy I. N., Zaytseva E. V. (2009). On the calculation of image illumination and the number of sinal electrons in a television sensor on a CCD matrix. Doklady TUSUR, 22(2), pp. 5 – 10. [in Russian language]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3