MODEL OF MECHANISM OF CONVERSION OF EXTERNAL ACTION INTO NATURAL OSCILLATIONS

Author:

Konovalov A. M.,Kugushev V. I.

Abstract

The work presents a geometrical interpretation of a mathematical model intended to give a specific description of the process of conversion of external dynamic action into natural oscillations of a part. Besides geometrical constructions, the essence of the model stems from the strict logic as well, following which the model does not have a tangible embodiment. Nonetheless, it is a function space, in which the process is being generated and energy of natural oscillations is getting accumulated, i.e. the model is an non-material carrier of free energy of elastic oscillations. Material carrier is the very part. The model is represented as the Riemannian space, in which all dynamic parameters are constant and set to zero, therefore, on the one side, it appears as if it does not have any tangible embodiment. On the other side, by nature, the model is a necessary expansion of the function space, which, on the qualitative level, allows to obtain explanation of a number of processes, which are observed experimentally, but to this day were not provided with a specific substantiation from a physics perspective. The proposed model can be an effective tool for analysis of processes, occurring in the course of non-destructive testing and vibration-based diagnostics. For example, the Article presents a theoretical justification of the process of modelling of cracks in the non-destructive testing methods, using natural oscillations of the item being checked. On top of that, it gives a derivation of the formula determining amount of the crack detected through these methods.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine

Reference24 articles.

1. Zukas Dzh. A., Nikolas T., Svift H. F. et al. (1985). Impact dynamics. Moscow: Mir. [in Russian language]

2. Ershov N. F., Popov A. N. (1989). Strength of ship structures under local dynamic loading. Leningrad: Sudostroenie. [in Russian language]

3. Ivanov A. P. (1997). Dynamics of systems with mechanical collisions. Moscow: Mezhdunarodnaya programma obrazovaniya. [in Russian language]

4. Kobylkin I. F., Selivanov V. V., Solov'ev V. S., Sysoev N. N. (2004). Shock and detonation waves. Research methods. 2nd ed. Moscow: Fizmatlit. [in Russian language]

5. Barmasov A. V., Holmogorov V. E. (2008). General physics course for nature users. Mechanics: a textboook. Saint Petersburg: BHV-Peterburg. [in Russian language]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3