METROLOGICAL SUPPORT FOR THE VERIFICATION OF MEDICAL INFRARED THERMOMETERS

Author:

Golobokov M. V.

Abstract

The paper analyzes two methods of checking medical infrared thermometers – using the black body model and using the gray body model. The use of black body models provides the highest accuracy of temperature reproduction. Direct verification of infrared thermometers is not possible due to the discrepancy between the emissivity value entered in the infrared thermometer and the emissivity value of the black body. In this paper, we propose an algorithm for calculating corrections to the value of the temperature reproduced by the black body. The values of the corrections for different temperatures and emissivity introduced in infrared thermometers are given. Using the gray body model does not require any additional calculations. A model of a gray body with an emissivity from 0.94 to 0.99 has been developed and studied. The advantage of the proposed design is low cost, ease of practical application, and the possibility of simultaneous verification of infrared thermometers with different set emissivity values. For each of the methods, an algorithm for estimating the measurement uncertainty during verification is proposed. The results of the research can be used in testing medical infrared thermometers for type approval and the development of verification methods.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine

Reference11 articles.

1. State verification schedule for temperature measuring instruments. (2012). Ru Standard No. GOST 8.558–2009. Moscow: Standartinform. [in Russian language]

2. Golobokov M. V. (2017). Blackbody model based on the "TERMOTEST-05-02" thermostat. Kontrol'. Diagnostika, (11), pp. 40 – 44. [in Russian language]

3. Ogarev S. A., Hlevnoy B. B., Lisyanskiy B. E. et al. (2015). Precision low and medium temperature blackbody models for radiometry and radiation thermometry. Izmeritel'naya tekhnika, (11), pp. 48 – 55. [in Russian language]

4. Medical electronic infrared thermometers. (2004). Verification method No 54700–13. Moscow: FGUP «VNIIOFI». [in Russian language]

5. Standard Specification for Infrared Thermometers for Intermittent Determination of Patient Temperature No. ASTM E1965–98. (2003). USA: ASTM International.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3