DIELECTRIC SPECTROSCOPY METHOD FOR POLAR POLYMERS ELASTIC PROPERTIES DIAGNOSTICS

Author:

Danilaev M. P.,Drobyshev S. V.,Karandashov S. A.,Klabukov M. A.,Kuklin V. A.,Lunev I. V.

Abstract

The mechanical properties of polymer materials are changes under the complex influence of such climatic factors as, for example, solar radiation, temperature changes, high humidity, and the impact of microorganisms – destructors. The methods of non-invasive diagnostics have to be used for changes prediction of the polymers materials products mechanical properties. The dielectric spectroscopy possibility using for diagnosing the modulus of elasticity of polymeric materials is considered in that paper. The results of elasticity modulus investigation by the dielectric spectroscopy using the DiMarzio–Bishop model and the mechanical measurements method are considered and compared in that paper. The results of dielectric and mechanical properties of polymers samples (polymethylmethacrylate, polycarbonate and polyvinylchloride) investigation are considered in that paper. These polymers are polar, so their mechanical properties in the elastic region of deformations can be investigate by dielectric spectroscopy method. This is due to the fact that the elastic deformations of a polymer are determined by the deformation of its macromolecules. It is show, that there are qualitative agreements between results of that measurement and the DiMarzio–Bishop model have to be refinement. The dipoles are represented as a spheres and interaction between dipoles are neglected in the DiMarzio–Bishop model. In our opinion, the interaction between dipoles in polymeric macromolecules is inevitable, and the configuration of dipoles differs from spherical. The necessity of using the calibration coefficient in the DiMarzio–Bishop model is shown by comparing the results of elastic modulus experimental measurements by the mechanical method and the dielectric spectroscopy method. This calibration factor takes into account the average number of dipoles in a macromolecule with a coefficient proportionality ∼6,7⋅10–5.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3