EVALUATION OF THE QUALITY OF MACHINE PARTS' MICRORELIEF BY THE METHOD OF CORRELATION-SPECTRAL ANALYSIS OF THEIR IMAGES

Author:

Abramov A. D.

Abstract

The article considers a method for estimating the parameters of the microrelief of the surface of machine parts by optoelectronic and computer means, as an integral part of the technological process of manufacturing machine parts with precision surfaces. The method is based on computer processing of images of the studied microreliefs, considered as a set of realizations of a stationary random process. The number of realizations of the random process is assumed to be equal to the number of lines in the analyzed microrelief image. The microrelief image is considered as a matrix of random numbers. For this matrix, mathematical expectations, variances, standard deviations, correlation moments and the normalized autocorrelation coefficient of honey are calculated for the columns of the matrix. To conduct research on the proposed method, an optical-electronic complex was used, consisting of an instrumental microscope with a video camera and a computer for digital processing of the obtained images of the microrelief f reference samples with different roughness. The surface roughness was estimated by standard methods on a profilograph and ranged from Ra = 0.025 µm to Ra = 0.130 µm. When developing software for correlation-spectral image processing, OpenCV tools and the C++ language were used. According to the research results, it was found that the nature of the correlation functions is largely determined by the parameters of the studied microreliefs. To identify the studied microreliefs, we determined the analytical dependences of the arithmetic mean deviation of the microrelief surface profile both on the average value of the variable component of the autocorrelation function and on the values of its spectral density. It has been established that for the identification of a microrelief by optical-electronic means, the most promising is the use of the spectral density of its autocorrelation function, calculated from its halftone image. The results of applying the correlation-spectral method for assessing the microrelief the working surface of an aircraft blade are presented.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine,General Chemistry

Reference12 articles.

1. State program of the Russian Federation "Scientific and technological development of the Russian Federation". (2019). Moscow. [in Russian language]

2. Main directions of economic and social development of the Russian Federation until 2020. (2008). Moscow. [in Russian language]

3. Fedorov V. P., Suslov A. G., Nagorkin M. N. (2019). Engineering methods of technological support of regulated roughness parameters of functional surfaces of machine parts during machining. Naukoemkie tekhnologii v mashinostroenii, 94(4), pp. 40 – 48. [in Russian language]

4. Suslov A. G., Fedorov V. P., Nagorkin M. N., Pyrikov I. L. (2018). An integrated approach to experimental studies of technological systems of metalworking to ensure quality parameters and operational properties of the surfaces of machine parts. Naukoemkie tekhnologii v mashinostroenii, (10), pp. 3 – 13. [in Russian language]

5. Dunin-Barkovskiy I. V. (1978). Measurements and analysis of surface roughness, sinuosity and non-roundness. Moscow: Mashinostroenie. [in Russian language]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3