QUANTITATIVE ANALYSIS OF THE DISTRIBUTION OF LOCAL POROSITY IN CARBON FIBER STRUCTURES BY LASER OPTOACOUSTIC METHOD

Author:

Sokolovskaya Yu. G.,Podymova N. B.

Abstract

Currently, an urgent problem is the development of non-destructive diagnostic techniques for quantifying the level of local porosity of composite structures. The paper presents a method for estimating the porosity of a material from the experimentally measured phase velocity of longitudinal acoustic waves propagating in it. Laser excitation of ultrasound was used to create probing pulses. Porosity was calculated using experimentally measured phase velocities of longitudinal acoustic waves propagating in the composite. The proposed method allows one-way access to the object during measurements, which makes it possible to study structures of variable thickness and complex shape. The possibility of obtaining distributions of local porosity values in the studied section of the structure is demonstrated by the example of three carbon fiber stringer panels. The study showed that locality of the porosity value and its change from point to point plays an important role in such constructions, and the maximum local porosity of this area of the panel may differ from the average volumetric porosity by more than two times. The possibility of obtaining a “map” of the distribution of the local porosity of the panel section in the plane of laying the carbon fabric is also demonstrated. This method is quite operational, which allows it to be used within the framework of real production in order to improve the conditions and methods of production.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3