THE DEVELOPMENT OF OPTICAL TESTING TECHNOLOGY OF PCM STRUCTURES BY FIBER-OPTIC SENSORS

Author:

Fedotov M. Yu.,Budadin O. N.,Kozelskaya S. O.

Abstract

The ways of development of optical control technology of polymer composite materials structures by fiber-optic sensors during production and operation are described and investigated. A mathematical model describing the process of PCM monitoring using fiber optic sensors based on fiber Bragg gratings, clarifying the parameters of a mathematical model by experimentally determining the sensitivity coefficient of fiber optic sensors integrated in PCM, makes it possible to reduce the error in measuring strain by 5 – 7 times. The interaction in the system fiber-optic sensors – PCM and found that the integration of fiber-optic sensors based on quartz fibers in PCM, there is a partial destruction of the protective acrylate shell, which leads to the effect of microslip, which does not significantly affect the quality of measurements and can be compensated for by calibration. The requirements for the placement of fiber-optic sensors in the PCM at the manufacturing stage, including the formation of the input / output zone are formulated. The technology of optical non-destructive testing of composite materials with fiber-optic sensors is described, taking into account the features of the interaction of fiber-optic sensors with composite structures.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine

Reference23 articles.

1. Basharov E. A., Vagin A. Yu. (2017). Analysis of the use of composite materials in the design of helicopter gliders. Trudy MAI, 92. Available at: http://trudymai. ru/upload/iblock/3a2/basharov_ vagin_rus.pdf (Accessed: 22.12.2018) [in Russian language]

2. The use of composite materials in the aircraft industry. Development prospects. Current status of projects. Electronic text, graphic data in the format *.html. Available at: http://www.hccomposite.com/upload/iblock/075/075b87d9c171f567f29fc4c4d3614440.pdf (Accessed: 10.07.2019)

3. Vagin A. Yu., Schetinin Yu. S. (2009). The use of polymer composite materials in the construction of Kamov helicopters. Collection of abstracts of the intersectoral conference "Composite materials in aerospace materials science". [in Russian language]

4. Moya D., Vila I., Virto A. L. (2013). Fiber Bragg grating sensors for smart- trackers: a real-time deformation, temperature and humidity monitor for the belle-ii vertex detector. IFCA (CSIC-UC) Forum on Tracking Detector Mechanics. Available at: https://slideplayer.com/slide/5797800 (Accessed: 10.07.2019)

5. Klyuev V. V. (Ed.), Ermolov I. N., Lange Yu. V. (2006). Non-Destructive Testing: Handbook: in 8 volumes. Vol. 3. Ultrasonic inspection. 2nd ed. Moscow: Mashinostroenie. [in Russian language]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3