INVESTIGATION OF ALGORITHMS OF DETECTING OF THE CHARACTERISTICS OF REMOTE OBJECTS IN OPTOELECTRONIC SYSTEMS BY THE METHOD OF WAVELET TRANSFORMATION

Author:

Makhov V. E.,Shirobokov V. V.,Emelyanov A. V.,Potapov A. I.

Abstract

The issues of the accuracy of measuring the coordinates and size of objects observed by an optical system by the methods of single and double continuous wavelet transform in their image are considered. It is shown that the use of the second continuous wavelet transform to the curves of the coefficients of the first transform leads to an increase in the extrema of the scalegram and the smoothness of the curves of the coefficients, providing more than two times higher coordinate sensitivity of determining the position and orientation of objects. The use of different types of wavelets in each continuous wavelet transform of signals gives many options for the curves of the coefficients of the continuous wavelet transform and can be used for additional filtering of noise, taking into account the nature of objects. The parallel use of mathematical models and real objects in a neural network for determining the coordinates of signals and their characteristics is proposed, which leads to an increase in accuracy for each type of object, the possibility of constructing intelligent control devices for outer space. Using the example of an experimental installation of two synchronously movable optoelectronic systems, the accuracy of combining images of objects in multiplexing systems from different digital sources is demonstrated.

Publisher

Izdatel'skii dom Spektr, LLC

Subject

General Medicine

Reference24 articles.

1. Sviridov K. N. (2015). On achieving the maximum resolution of aerospace systems for remote sensing of the Earth (ERS). Raketno-kosmicheskoe priborostroenie i informatsionnye tekhnologii, pp. 489 – 499. Moscow: OAO RKS. [in Russian language]

2. Makhov V. E., Shirobokov V. V., Emelyanov A. V. (2020). Study of possibilities for light marker coordinate measuring with light field digital cameras. IOP Conference Series: Materials Science and Engineering, Vol. 918, (1). DOI 10.1088/1757-899X/918/1/012079.

3. Goritov A. N. (2018). Preprocessing of images in vision systems. Doklady TUSUR, Vol. 21, (4-1). [in Russian language] DOI 10.21293/1818-0442-2018-21-4-1-53-58.

4. Altynov A. E., Gruzinov V. V., Mishin I. V. (2017). Correlation analysis of aerospace images. Izvestiya vysshih uchebnyh zavedeniy. Geodeziya i aerofotosyemka, (1), pp. 34 – 40. [in Russian language]

5. Makhov V. E., Shaldaev S. E., Potapov A. I., Smorodinskiy Ya. G. (2020). Influence of Image Quality in Optoelectronic Systems on the Accuracy of Determination of Object Parameters under Study. Defektoskopiya, (7), pp. 28 – 43. [in Russian language] DOI 10.31857/S01303082200700 40.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3