Design, Optimization and Evaluation of Lurasidone Hydrochloride Nanocrystals as Fast Disintegrating Tablets

Author:

Sahoo Satya Sankar1,Rao Chandu Babu1

Affiliation:

1. Department of Pharmaceutics. Priyadarshini Institute of Pharmaceutical Education Research (PIPER), 5th Mile, Pulladigunta, Guntur-522017, India

Abstract

Formulation of poorly water-soluble drugs for oral drug delivery has always been a difficult task for formulation scientists. Lurasidone hydrochloride is one such agent which is used to control bipolar depre-ssion. The objective of this study was to formulate and optimize lurasi-done nanosuspension, further formulating optimized nanosuspensions as fast disintegrating tablets for improved patient compliance. In the present study, lurasidone nanosuspension was prepared by nanomilling technique. Optimized nanosuspension has mean particle diameter of 248.9 nm, polydispersity index of 0.127 and zeta potential of 18.1 mV. The lyophilized optimized nanocrystals, optimize nanosuspension as granulating fluid and as top spraying dispersion for granulation in fluid bed granulator being used to formulate fast disintegrating tablets with suitable super disintegrant. Croscarmellose sodium was found to be best superdisintegrant compared to sodium starch glycolate and crospovidone, as its acts by both mechanism swelling and wicking. Its swells 4-8 folds in less than 10 s. Many folds increase in the rate of drug release observed compare to micronized lurasidone and marketed product. There was no change in crystalline nature after nanomilling as characterized by XRD and FTIR, and it was found to be chemically stable with high drug content. The developed fast disintegrating tablets would be an alternative better formulation than its conventional formulation to address its bioavailability issue and for improved patient compliance. However, this should be further confirmed by appropriate in vivo studies.

Publisher

Asian Journal of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3