Synthesis, Characterization, in silico and in vitro Evaluations of Symmetrical 1,3-Diketones

Author:

Porchezhiyan V.1,Kalaivani D.1,Shobana J.2,Noorjahan S.E.1

Affiliation:

1. Department of Chemistry, Guru Nanak College (Autonomous), Guru Nanak Salai, Velachery, Chennai-600042, India

2. Department of Chemistry, Justice Basheer Ahmed Sayeed College for Women (Autonomous), Chennai-600018, India

Abstract

1,3-Dicarbonyl compounds have gained significant importance since they are abundantly available in the natural products and possess myriad biological activities. The new symmetrical 1,3-diketones bearing L-proline, 2-methyl-5-iodobenzoic acid, piperidine-3-carboxylic acid and naphthalene-1-acetic acid moieties were synthesized by coupling reaction of appropriate ketone with N-acyl triazole in the presence of MgBr2·Et2O and DIPEA. The chemical structure of the compounds were confirmed from the spectral data such as 1H, 13C NMR, FT-IR and HRMS. Molecular docking studies were carried out for all the compounds with tumor associated protein tyrosine kinase-6 (PTK6) and inflammatory protein cyclooxygenase-2 (COX2). The in vitro evaluation was carried out using breast cancer cell lines (MTT assay) and HRBC stabilization assays. During in silico studies, the ki values obtained against PTK6 and COX2 for (5a-d) compounds were in the range (-7.5 to -10.6) and (-7.6 to -9.8) kcal/mol, respectively. The compound 5d was selected for MTT assay, since it exhibited the highest binding affinity (-10.6 kcal/mol) against PTK6 and gave IC50 - 2.4 μg/mL against breast cancer cell lines. The HRBC stabilization of all the compounds (5a-5d) were in the range (59.28-93.4) %, with highest stabilization value by 5d, which also displayed higher binding affinity with -7.6 kcal/mol towards COX2. Thus, the synthesized symmetrical 1,3-diketones with suitable functionality can be both anticancer and anti-inflammatory agents.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3