Affiliation:
1. Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangalore-560054, India
Abstract
Zinc oxide nanoparticles were synthesized using epicarp of Punica granatum by combustion method at moderate temperatures. Zinc oxide nanoparticles obtained in agglomerate form were characterized by powder X-ray diffractometer (PXRD) and found to have hexagonal phase, wurtzite structure. The crystalline size of nanoparticle was found to be ~ 60 nm by using Debye-Scherrer formula. The morphology Index, Lorentz factor and Lorentz polarization factor were also calculated. Ultraviolet-visible spectroscopy (UV-vis) spectrum for ZnO nanoparticle showed a strong absorbance
at 374 nm. This corresponds to the calculated band gap energy of 3.48 eV and the particle size calculated using band gap was found to be 50 nm. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum showed a peak at 499 cm-1, which indicated Zn-O stretch bond. The scanning electron microscopy (SEM) analysis proved the size of nanoparticles synthesized were around 50 nm and energy dispersive X-ray spectroscopy (EDS) revealed the elemental composition of zinc oxide nanoparticles. The ZnO-NPs were evaluated for antibacterial activity against gram positive, tonsillitis causing Streptococcus pyogenes. From the present study, it was concluded that zinc oxide nanoparticles synthesized by combustion method could be valuable and economic in the field of nanotechnology.
Publisher
Asian Journal of Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献