Recycling Used-Coffee Grounds into Hierarchical Nanostructured Carbon for Supercapacitor Application

Author:

Rajasekar C.1ORCID,Ranjitha M. Roselin2ORCID,Kumar K. Thileep3ORCID,Kalaivani R.A.1ORCID,Raghu S.4ORCID

Affiliation:

1. Department of Chemistry, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai-600117, India

2. Department of Chemistry, Stella Maris College (Autonomous) (affiliated to University of Madras), Chennai-600086, India

3. Advanced Energy Material Laboratory, Department of Advanced Components and Material Engineering, Sunchon National University, Suncheon, Jeollanam-do, 579-22, Republic of Korea

4. Centre for Advanced Research and Development (CARD)/Chemistry, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai-600117, India

Abstract

Hierarchical nanostructured activated carbon electrode material was prepared from the used-coffee grounds to fabricate a cost-effective, scalable and high-performance symmetric supercapacitor. The interconnected, disordered and microporous material was synthesized in a simple two-stage method of chemical activation with zinc chloride followed by direct pyrolysis of the coffee grounds at 900 ºC in nitrogen atmosphere. The N2 adsorption and desorption analysis showed that the prepared material had an extraordinary surface area of ~1178 m2 g-1. The fabricated symmetric supercapacitor device in non-aqueous tetraethylammonium tetrafluoroborate (TEABF4) electrolyte exhibited 2.7 V cell voltage with superior specific capacitance, energy and power density of 129 F g–1, 56.4 Wh kg–1 and 797.9 W kg–1, respectively. Besides, it also had a high specific capacitance retention of 99% even after 10,000 cycles. This work demonstrated an effective approach to transform coffee grounds into high performance electrode material for renewable energy devices. The observed electrochemical performance evidently showed that the materials derived from waste coffee grounds could be recycled into potential electrode material for supercapacitors. The cost-effectiveness and abundance of waste coffee grounds combined with the simple activation process and high performance of the synthesized material increased its feasibility for commercial applications in energy storage devices.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3