Biocontrol of Aedes aegypti using Talaromyces islandicus Synthesized Silver Nanoparticles

Author:

George Jincy A.1ORCID,Rajalakshmi K.S.Vinanthi1,Rajendran Rajesh2,Paari Kuppusamy Alagesan1ORCID

Affiliation:

1. Department of Life Sciences, CHRIST (Deemed to be University), Bangalore-560029, India

2. Department of Energy and Environment Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India

Abstract

Aedes aegypti is the vector that spreads the dengue virus, causing dengue fever and dengue hemorrhagic fever. With more than half the world’s population at the risk of acquiring this infection, controlling the Aedes mosquitoes is the only path to limit the spread of the fatal disease. The emergence of insect resistance in mosquitoes raised the need for developing novel insecticides. Present research is focused on using fungus (Talaromyces islandicus) as the biosystem in the synthesis of nanoparticles. Myco-synthesized silver nanoparticles were characterized using UV-visible spectrometry that exhibited a peak at 429 nm. The XRD spectral peaks were in the range of 27.83º, 32.27º, 38.23º and 65.01º. The FTIR spectrum showed peaks corresponding to O-H, N-O, S=O, etc. representing the silver nanoparticles. SEM and EDAX represent the formation of silver ions that are spherical in shape with a size range of 23 to 26 nm. The antioxidant activity of silver nanoparticles and the extract of Talaromyces islandicus were assessed by DPPH assay, reducing power assay and hydrogen peroxide assay. The nanoparticles studied for its bio efficacy against the larval stages of Aedes aegypti indicated the LC50 value of 352.03, 389.86, 397.72 and 443.50 when tested against first, second, third and fourth instar larvae. respectively. The LC50 value of 540.41 was determined against the pupae of Aedes. The predatory efficiency of P. reticulata indicated the positive feeding behaviour of the fish when exposed to the silver nanoparticles. The cell toxicity assay was conducted against C6/36 insect cell lines and the cell viability inhibition was calculated. A toxic free, environmentally acceptable approach for controlling the mosquito vector by utilizing fungal nanoparticles was assessed and their efficacy in vector control was analyzed in this study.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3