A Precised Surface Modification of Hydroxyapatite with Poly(methylmethacrylate) for Tissue Engineering & Regenerative Medicine

Author:

Nguyen Trinh Duy1ORCID,Nhan Nguyen Phu Thuong1,Tran Thien Hien1,Islam Md. Rafiqul2,Lim Kwon Taek2,Bach Long Giang3ORCID

Affiliation:

1. NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam

2. Department of Display Engineering, Pukyong National University, Busan 608-737, Republic of Korea

3. NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam; Center of Excellence for Functional Polymers and NanoEngineering, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam

Abstract

The poly(methylmethacrylate) (PMMA) grafted biocompatible hydroxyapatite nanocrystals (HAPs) hybrid nanocomposites (PMMA-g-HAPs) were synthesized by employing surface thiol-lactam initiated radical polymerization (TLIRP) through grafting from strategy. At first, the surface of HAPs was functionalized by 3-mercaptopropyl-trimethoxysilane in one-step process to prepare thiol immobilized HAPs (HAPs-SH). Subsequently, a controlled radical polymerization of MMA by using two component initiating system comprising of HAPs-SH and butyrolactam (BL) successfully afforded PMMA-g-HAPs nanocomposites. The resulting structure and morphological feature of nanocomposites was systematically characterized by FT-IR and XRD analyses. GPC studies of cleaved polymers from nanocomposites of different time revealed that the grafting polymerization from the surface of HAP was well controlled in nature. Moreover, the thermal property of the PMMA was found to be improved by incorporation of inorganic HAP nanoparticles in the polymer matrix as revealed by TGA and DSC studies. The colloidal stability of the synthesized nanocomposites was observed to be exceptionally good in organic solvents as suggested by the time dependent monitoring using UV-visible spectroscopy and captured digital photographs. The synthesized nanocomposites show a great promise for the safe application in tissue engineering and regenerative medicine.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3