Synthesis, Structure, Magnetic and Catalytic Competency of a Tetradentate (NNOO) Schiff Base Mediated Dimeric Copper(II) Complex

Author:

Chowdhury Habibar1ORCID,Bera Rajesh2ORCID,Adhikary Chandan3ORCID

Affiliation:

1. Department of Chemistry, Kabi Nazrul College, Murarai, Birbhum-731219, India

2. Department of Chemistry, Dinabandhu Andrews College, Kolkata-700084, India

3. Department of Education, The University of Burdwan, Golapbag, Burdwan-713104, India

Abstract

One dinuclear copper(II) complex {μ-[2,2′-{ethane-1,2-diylbis[(azanylylidene)methanylylidene]}- bis(phenolato)]}-{μ-[2,2′-{ethane-1,2-diylbis[(azanylylidene)methanylylidene]}bis(phenolato)]}- dicopper(II), [Cu2(salen)2] (1) [salen2− = [2,2′-{ethane-1,2-diylbis[(azanylylidene)methanylylidene]}- bis(phenolato)] has been isolated and characterized by X-ray diffraction analysis and spectroscopic studies. X-ray single crystal structure examination revealed that each Cu(II) center in the asymmetric unit of 1 adopts a distorted square planar geometry with a CuN2O2 chromophore, where two asymmetric units are attached through congregation of Salen involving Cu-O bond to form dinuclear molecular unit [Cu2(salen)2]. In crystalline state, these dinuclear entities in 1 are extended through C-H···π interactions and π···π interactions displaying a 3D network structure. The variable-temperature magnetic susceptibility measurement asserted a dominant antiferromagnetic interaction between the copper(II) centers through Cu-O-Cu linkage in 1 with J = -1.46 cm-1. The catalytic efficacy of complex 1 was studied in a series of solvents for the oxidation of styrene and cyclooctene using tert-butyl-hydroperoxide (TBHP) as an active oxidant under mild conditions. The catalytic reaction mixture has been analyzed by gas chromatography and it displayed that the yield of the epoxidation and its selectivity is optimum in acetonitrile medium.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3