Design, Synthesis, Computational and Biological Evaluation of 4-Amino-3,5-dimercapto-1,2,4-triazole Surface Functionalized Gold Nanoparticles

Author:

Veena V.1,Shivaprasad K.H.1,Lokesh K.S.1,Sharanagouda H.2,Ramakrishna D.3

Affiliation:

1. Department of Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari-583105, India

2. Department of Processing and Food Engineering, College of Agricultural Engineering, University of Agricultural Sciences, Raichur-584102, India

3. Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore-560078, India

Abstract

Gold nanoparticles (AuNPs) are an obvious choice for rapid advance in nanotechnology due to their amenability of synthesis, functionalization and less toxicity. Functionalization of AuNP surface with 4-amino-3,5-dimercapto-1,2,4-triazole (ADMT) ligand as ADMT-AuNPs was investigated with the aim to probe the suitability of innovative product to develop new antibacterial and anticancer strategies. Various characterization studies like UV-spectra, Zeta size, Zeta potential, XRD, SEM, TEM and FTIR results of AuNPs and ADMT-AuNPs have been performed to study the structural and electronic properties. The studies revealed that the functionalized nanoparticles are highly crystalline in nature with the sizes ranging between 20-22 and 50-55 nm for AuNPs and ADMT-AuNPs, respectively with FCC structures. The characterization data reveals that the synthesized nanoparticles are stable and presence of strong interactions between the metallic surface and the organic ligand. Further, ADMT-AuNPs showed good antibacterial activity against Gram-positive and Gram-negative bacteria. MTT assay exhibited the cell viability with an IC50 value of 45.32 % v/v for ADMT-AuNPs against breast adenocarcinoma (MCF-7) cell lines. Molecular characterization i.e., in silico docking analysis helped in identifying and organizing the structural similarity/diversity at the molecular level. The in silico study indicated that the structure S1a has good glide score and glide energy for H-bonding among the possible conformations against bacterial and breast cancer protein. Molecular docking studies confirmed the introduction of conformational changes that are essential to surpass the potential energy barriers of ADMT-AuNPs for biocompatibility and proved that they hold a promising future in the medical field.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Triazoles in Nanotechnology;Advances in Triazole Chemistry;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3