Optical Absorption, Kinetics and Thermodynamic Studies of Pr(III) and Nd(III) Ions with N-Acetyl L-Cysteine in Presence of Ca(II) ions

Author:

Singh Thiyam Samrat1ORCID,Singh Thiyam David1ORCID

Affiliation:

1. Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal-795004, India

Abstract

Interaction of N-acetyl-L-cysteine (NAC) with Pr3+ (Pr(NO3)3·6H2O) and Nd3+ (Nd(NO3)3·6H2O) ions are studied in presence of Ca2+ (Ca(NO3)3·4H2O) ion in an aqueous and organic solvent by applying the spectroscopic technique for quantitative probe of 4f-4f transition. The complexation was determined by the variation in the intensities of 4f-4f absorption spectral bands and by applying the change of symmetric properties of electronic-dipole known as Judd-Ofelt parameters Tλ (λ = 2,4,6). On the addition of Ca2+ ion in the binary complexation of praseodymium and neodymium with N-acetyl-L-cysteine (NAC) there is an intensification of bands which shows the effect of Ca2+ toward the heterobimetallic complex formation. Other parameters like Slater-Condon (Fk), bonding (b1/2), the Nephelauxetic ratio (β), percentage covalency (δ) are also used to correlate the complexation of metals with N-acetyl-L-cysteine (NAC). With the minor change in coordination around Pr3+ and Nd3+ ions, the sensitivity of 4f-4f bands is detected and further used to explain the coordination of N-acetyl-L-cysteine (NAC) with Pr3+ and Nd3+ in presence of Ca2+. The variation in oscillator strength (Pobs), energy (Eobs) and dipole intensity parameter help in supporting the heterobimetallic complexation of N-acetyl-L-cysteine. In kinetics investigation, the rate of the complexation of both hypersensitive and pseudo-hypersensitive transition is evaluated at various temperature in DMF solvent. The value of the thermodynamic parameters such as ΔHo, ΔSo and ΔGo and activation energy (Ea) also evaluated.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3