Pulmonary Phospholipid Components as Promising Natural Inhibitors against COVID-19 Mpro; Molecular Docking Analysis Based Study

Author:

Hussein Mohammed A.1ORCID,Abo-Salem Heba M.2,Moro Ahmed M.3,Abdel-Wahab Ebtsam A.3,Ali Ali A4,Abdelkawy Shaimaa A.1

Affiliation:

1. Department of Biotechnology, Faculty of Applied Health Sciences Technology, October 6 University, Sixth of October City, Egypt

2. Department of Chemistry and Natural Compounds, Pharmaceutical and Drug industries Research Division, National Research Center, Dokki, Giza, Egypt

3. Department of Biophysics, Faculty of Applied Medical Sciences, October 6 University, Sixth of October City, Egypt

4. Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt

Abstract

The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome SARS-CoV-2 has become a global crisis. Phospholipids are structural components of mammalian cell membranes that suppress viral attachment to the plasma membrane and subsequent replication in lung cells. Using the molecular docking approach, the inhibitory activity of phosphatidylcholine, dipalmitoylphosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, lysobisphosphatidic acid and sphingomyelin against SARS CoV-2 by targeting main protease (Mpro, PDB code: 6LU7) has been investigated. All phospholipids established excellent binding to Mpro active bocket by forming several H-bonds with the catalytic amino acids Cys145 and His4, as well as various amino acids involved in the bocket. Furthermore, a potent binding affinity is increased from -7.01 to -9.16 kcal/mol compared to compound N3 (N-[(5-methylisoxazol-3-yl)carbonyl]alanyl- L (where L = valyl-N-1-(1R,2Z)-4-(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2- enyl)-L-leucinamide), a peptide linker, inhibitor for Covid-19 main protease. Co-crystalline ligand of enzyme 6LU7 of -9.99 kcal/mol. The sphingomyelin has the same binding affinity to main protease when compared to compound N3. These findings implied that the selected compounds have the potential to be developed as novel SARS-CoV-2 inhibitors. Therefore, improved, well-designed, potent and structurally and pharmacokinetically effective drugs are urgently needed. Further investigations should focus on validating and finalizing effective drugs for COVID-19 beyond preliminary in silico and in vivo screening.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3