DFT Calculations of 2,5-Diphenyl Furan against SARS-CoV-2 Mpro based on Molecular Docking Approach

Author:

Jeyavijayan S.1ORCID,Ramuthai M.1ORCID,Murugan Palani2ORCID

Affiliation:

1. Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India

2. Department of Physics, Dr. B.R. Ambedkar Institute of Technology, Port Blair-744103, Andaman & Nicobar Islands, India

Abstract

FTIR, FT-Raman and density functional theory (DFT) studies of 2,5-diphenyl furan (DPF) has been carried out to interpret the molecular structure, vibrational frequencies and its intensities. From the estimation, we obtained the HOMO-LUMO energy gap as 2.7113 eV, which is clearly significant the charge transfer occurs within the molecule. The intramolecular interaction and delocalization of the charges has been studied using NBO analysis. In addition, molecular electrostatic potential (MEP) calculations were also performed. The hydrogen bond interactions and binding energy of 2,5-diphenyl furan were estimated using molecular docking studies. The docking investigation was carried out to confirm the repressive nature of title molecule against SARS-CoV-2 main protease (Mpro) proteins.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3