Fungal Glycoside Hydrolases of White-Rot Fungi for Cellulosic Biofuels Production: A Review

Author:

SUNARDI 1ORCID,ISTIKOWATI WIWIN TYAS2,ISHIGURI FUTOSHI3,YOKOTA SHINSO3

Affiliation:

1. 1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Banjarbaru 70714, Indonesia 2Wetland-Based Materials Research Center, Lambung Mangkurat University, Banjarbaru 70714, Indonesia

2. Faculty of Forestry, Lambung Mangkurat University, Banjarbaru 70714 Indonesia

3. Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan

Abstract

The second generation bioethanol production from lignocellulose materials through environmental friendly methods is one of the biggest challenges on industrial application. Enzymatic hydrolysis of cellulose has more benefits compared with the acid hydrolysis This method has the good specificity, low consumption of energy and chemicals and is more environmental friendly. However, the utilization of lignocellulose for bioethanol production through enzymatic methods is still confronting several difficulties for commercialization. Cellulose hydrolysis step has been reported to be the bottleneck of bioethanol production by enzymatic process, and the major barrier of this process is high price of enzymes, which making the process less economically feasible. For this reason, many developments are still needed in cellulase production from various organisms for cellulose saccharification. White-rot fungi have received much consideration for their valuable enzyme systems which can effective degrade lignocellulose biomass. These fungi could secrete extracellular oxidative and hydrolytic enzymes that degrade lignin, hemicellulose, and cellulose. This review provides a complete overview of the glycoside hydrolases enzymes production by white-rot fungus, such as endoglucanase, exoglucanase, β-glucosidase, cellobiose dehydrogenase and lytic polysaccharide monooxygenase. The use of white-rot fungus for low cost glycoside hydrolases enzymes production might be fascinating for second generation bioethanol production.

Publisher

Asian Journal of Chemistry

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3