Evidence for the Existence of Two Prolactin Isoforms in the Developing Pituitary Gland of the Goose (Anser cygnoides)

Author:

Hu Shenqiang1,Li Li1,Ren Xufang1,Qing Enhua1,Deng Donghang1,He Hua1,Li Liang1,Wang Jiwen1

Affiliation:

1. Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China

Abstract

Compared to Galliformes such as chicken and turkey, very little is known about the existence and expression of isoforms of prolactin (PRL) in the pituitary glands of Anseriformes. In this study, by generating a rabbit-anti-goose (Anser cygnoides) PRL polyclonal antibody, we analysed the expression patterns of goose PRL isoforms in the embryonic and post-hatch development of the pituitary gland. Our results showed that two immunoreactive bands with molecular weights of about 23 and 26 kDa were detected using the Western blot technique, corresponding to the non-glycosylated (NG-) and the glycosylated (G-) isoform of PRL, respectively. The protein levels of the total PRL in a goose increased gradually from the embryonic day (ED) 22 to the post-hatch day (PD) 28, with a non-significant decrease on PD6. Furthermore, the percentage of G-PRL in the pituitary gland of the goose fluctuated from about 30.3% to 54.7% throughout the embryonic and post-hatch development. At the mRNA level, the expression of PRL increased steadily during the development and reached the highest levels on PD12, but later showed a non-significant decrease on PD28. The inconsistent expression patterns between the PRL mRNA and protein during the stages from PD6 to PD28 indicated that the PRL gene expression involves both transcriptional and post-translational regulation. Taken together, our data unequivocally demonstrated the existence of NG- and G-PRL in the pituitary gland of a goose and that the expression of the total PRL as well as the percentage of G-PRL significantly changed during embryonic and post-hatch development, indicating that the versatile biological functions of PRL during the ontogenesis of a goose could be closely related to changes in both its total expression and the degree of glycosylation in the pituitary gland.

Publisher

Institute of Systematics and Evolution of Animals, Polish Academy of Sciences

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3