Molecular Mechanisms of Cellular Copper Homeostasis in Mammals

Author:

Herman Sylwia1,Lipiński Paweł2,Starzyński Rafał2,Bednarz Aleksandra1,Grzmil Paweł1,Lenartowicz Małgorzata1

Affiliation:

1. Laboratory of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland

2. Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Jastrzêbiec, Poland

Abstract

Copper (Cu) is a trace element necessary for the growth and development of all living organisms, and is the third most abundant trace metal in the body after iron and zinc. Copper is essential for maintaining the life processes in all living cells, because several copper-dependent enzymes play an important role in key physiological processes like cellular respiration, oxygen radical scavenging, the transport of iron and neurotransmitter synthesis. Maintaining copper homeostasis implies maintaining the constancy of copper levels in the cells and fluids throughout the body, in order to support the enzymes and other factors that underlie normal life processes. Therefore, living organisms have developed complex mechanisms for maintaining their physiological copper level, because an excess copper level can be toxic for the cells. In the cell, copper homeostasis is controlled by a network of copper-binding proteins and transporters. Furthermore, copper uptake is mediated by the membrane transporter CTR1 and CTR2 proteins. In the cytoplasm, it is bound to a unique group of metallochaperones (ATOX1, CCS COX17) and transported to different cell compartments, where it is linked to the recipient proteins. The Cu-transporting ATPases (ATP7A and ATP7B) are responsible for transferring copper into the Golgi apparatus, where the copper is added to the active sites of enzymes, and it is also directed onto the path of excess cellular copper removal to prevent the occurrence of toxicity.

Publisher

Institute of Systematics and Evolution of Animals, Polish Academy of Sciences

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3