Shape of curve lactation affects the fitting of empirical and mechanistic models applied to dairy sheep lactations in Mexico
-
Published:2023-06-15
Issue:Suplemento
Volume:31
Page:305-311
-
ISSN:2075-8359
-
Container-title:Archivos Latinoamericanos de Producción Animal
-
language:
-
Short-container-title:ALPA
Author:
Guevara Muñeton Lilian PaolaORCID, Gloria Leonardo SiquieiraORCID, Benaouda Mohamed, Teuntle-Lopez Isaac Alberto, Valdes-Cordoba Ximena Sofia, Angeles-Hernandez Juan CarlosORCID, Aniceto Elon SouzaORCID, Peláez Acero ArmandoORCID
Abstract
The ability of mathematical models to represent the lactation process varies according with their mathematical structure and database characteristics. The aim of the current study was evaluated the goodness of fit of empirical and mechanistic models applied to dairy sheep lactation curves with different shapes. A total of 4,494 weekly test day records were analyzed. All lactations were individually fitted using two empirical (Wood and Wilmink) and two mechanistic (Dijkstra, and Pollott) models. The Dijkstra model showed the best performance to typical curves and Wood model to atypical curves (without peak lactation). Therefore, the selection of the mathematical model to fit sheep lactation curves must consider the specific patter of milk production.
Publisher
Asociacion Latinoamericana de Produccion Animal
Reference13 articles.
1. Angeles-Hernandez, J. C., Pollott, G., Albarran-Portillo, B., Ramírez-Perez, A. H., Lizarazo-Chaparro, A., Castelan Ortega, O. A., & Gonzalez Ronquillo, M. (2018). The application of a mechanistic model to analyze the factors that affect the lactation curve parameters of dairy sheep in Mexico. Small Ruminant Research, 164, 58-63. https://doi.org/10.1016/j.smallrumres.2018.05.003 2. Dijkstra, J., France, J., Dhanoa, M. S., Maas, J. A., Hanigan, M. D., Rook, A. J., & Beever, D. E. (1997). A Model to Describe Growth Patterns of the Mammary Gland During Pregnancy and Lactation. Journal of Dairy Science, 80(10), 2340-2354. https://doi.org/10.3168/jds.S0022-0302(97)76185-X 3. Elzhov, T. V., Mullen, K. M., Spiess, A.-N., & Bolker, B. (2022). minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. R package version 1.2-2. https://CRAN.R-project.org/package=minpack.lm 4. Giraldo, J., Vivas, N. M., Vila, E., & Badia, A. (2002). Assessing the (a)symmetry of concentration-effect curves: Empirical versus mechanistic models. Pharmacology & Therapeutics, 95(1), 21-45. https://doi.org/10.1016/s0163-7258(02)00223-1 5. Hernández, J. C. Á., Schilling, S. R., Arias, M. A. V., Pérez, R. A. E., Castelán-Ortega, O. A., Pérez, A. H. R., & Ronquillo, M. G. (2017). Effect of live weight pre- and post-lambing on milk production of East Friesian sheep. Italian Journal of Animal Science. https://www.tandfonline.com/doi/abs/10.1080/1828051X.2017.1349536
|
|