ViSiElse: an innovative R-package to visualize raw behavioral data over time

Author:

Garnier Elodie M.1ORCID,Fouret Nastasia1,Descoins Médéric12

Affiliation:

1. Centre d’Études Périnatales de l’Océan Indien (CEPOI, EA 7388), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, La Réunion

2. Centre de Simulation en Santé de l’Océan Indien, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, La Réunion

Abstract

The scientific community encourages the use of raw data graphs to improve the reliability and transparency of the results presented in articles. However, the current methods used to visualize raw data are limited to one or two numerical variables per graph and/or small sample sizes. In the behavioral sciences, numerous variables must be plotted together in order to gain insight into the behavior in question. In this article, we present ViSiElse, an R-package offering a new approach in the visualization of raw data. ViSiElse was developed with the open-source software R to visualize behavioral observations over time based on raw time data extracted from visually recorded sessions of experimental observations. ViSiElse gives a global overview of a process by creating a visualization of the timestamps for multiple actions and all participants into a single graph; individual or group behavior can then be easily assessed. Additional features allow users to further inspect their data by including summary statistics and time constraints.

Funder

SIMULRUN 1 and 2 projects from Region Reunion and POE FEDER European Research Program

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the Relationship Between Behaviours Using Semantic Technologies;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3