Individual-based simulation of the spatial and temporal dynamics of macroinvertebrate functional groups provides insights into benthic community assembly mechanisms

Author:

Alexandridis Nikolaos1,Bacher Cédric1ORCID,Desroy Nicolas2,Jean Fred3ORCID

Affiliation:

1. DYNECO-LEBCO, IFREMER, Centre de Bretagne, Plouzané, France

2. Laboratoire Environnement et Ressources de Bretagne Nord, IFREMER, Station CRESCO, Dinard, France

3. LEMAR, Institut Universitaire Européen de la Mer, Université de Brest, UBO, CNRS, IRD, Plouzané, France

Abstract

The complexity and scales of the processes that shape communities of marine benthic macroinvertebrates has limited our understanding of their assembly mechanisms and the potential to make projections of their spatial and temporal dynamics. Individual-based models can shed light on community assembly mechanisms, by allowing observed spatiotemporal patterns to emerge from first principles about the modeled organisms. Previous work in the Rance estuary (Brittany, France) revealed the principal functional components of its benthic macroinvertebrate communities and derived a set of functional relationships between them. These elements were combined here for the development of a dynamic and spatially explicit model that operates at two spatial scales. At the fine scale, modeling each individual’s life cycle allowed the representation of recruitment, inter- and intra-group competition, biogenic habitat modification and predation mortality. Larval dispersal and environmental filtering due to the tidal characteristics of the Rance estuary were represented at the coarse scale. The two scales were dynamically linked and the model was parameterized on the basis of theoretical expectations and expert knowledge. The model was able to reproduce some patterns of α- and β-diversity that were observed in the Rance estuary in 1995. Model analysis demonstrated the role of local and regional processes, particularly early post-settlement mortality and spatially restricted dispersal, in shaping marine benthos. It also indicated biogenic habitat modification as a promising area for future research. The combination of this mechanism with different substrate types, along with the representation of physical disturbances and more trophic categories, could increase the model’s realism. The precise parameterization and validation of the model is expected to extend its scope from the exploration of community assembly mechanisms to the formulation of predictions about the responses of community structure and functioning to environmental change.

Funder

LabexMer French project

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3