Modelling the growth of the brown frog (Rana dybowskii)

Author:

Tong Qing12ORCID,Du Xiao-peng3,Hu Zong-fu3,Cui Li-yong2,Wang Hong-bin1

Affiliation:

1. College of Veterinary Medicine, Northeast Agricultural University, Harbin, China

2. Hejiang Forestry Research Institute of Heilongjiang Province, Jiamusi, China

3. Northeast Agricultural University, Harbin, China

Abstract

Well-controlled development leads to uniform body size and a better growth rate; therefore, the ability to determine the growth rate of frogs and their period of sexual maturity is essential for producing healthy, high-quality descendant frogs. To establish a working model that can best predict the growth performance of frogs, the present study examined the growth of one-year-old and two-year-old brown frogs (Rana dybowskii) from metamorphosis to hibernation (18 weeks) and out-hibernation to hibernation (20 weeks) under the same environmental conditions. Brown frog growth was studied and mathematically modelled using various nonlinear, linear, and polynomial functions. The model input values were statistically evaluated using parameters such as the Akaike’s information criterion. The body weight/size ratio (Kwl) and Fulton’s condition factor (K) were used to compare the weight and size of groups of frogs during the growth period. The results showed that the third- and fourth-order polynomial models provided the most consistent predictions of body weight for age 1 and age 2 brown frogs, respectively. Both the Gompertz and third-order polynomial models yielded similarly adequate results for the body size of age 1 brown frogs, while the Janoschek model produced a similarly adequate result for the body size of age 2 brown frogs. The Brody and Janoschek models yielded the highest and lowest estimates of asymptotic weight, respectively, for the body weights of all frogs. TheKwlvalue of all frogs increased from 0.40 to 3.18. TheKvalue of age 1 frogs decreased from 23.81 to 9.45 in the first four weeks. TheKvalue of age 2 frogs remained close to 10. Graphically, a sigmoidal trend was observed for body weight and body size with increasing age. The results of this study will be useful not only for amphibian research but also for frog farming management strategies and decisions.

Funder

Heilongjiang Province Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference56 articles.

1. Analysing the growth of turbot (Psetta maxima) in a commercial recirculation system with the use of three different growth models;Baer;Aquaculture International,2011

2. Nonlinear models;Bates,1985

3. Stocking technology of semi-artificial breeding about Heilongjiang forest frog;Bing;Forest By-Product and Speciality in China,2012

4. A comparison of nonlinear models for describing weight-age relationships in cattle;Brown;Journal of Animal Science,1976

5. Sexual size dimorphism in desmognathine salamanders;Bruce;Copeia,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3