Plant diversity is closely related to the density of zokor mounds in three alpine rangelands on the Tibetan Plateau

Author:

Niu Yujie1,Zhou Jianwei1,Yang Siwei2,Chu Bin1,Zhu Huimin1,Zhang Bo1ORCID,Fang Qiangen1,Tang Zhuangsheng1,Hua Limin1

Affiliation:

1. College of Grassland Science/Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou, Gansu, China

2. Institute of Animal and Veterinary Science, Bijie, Guizhou, China

Abstract

Background Plateau zokor (Myospalax baileyi) is a subterranean rodent endemic to the Tibetan Plateau. This species has been generally viewed as a pest in China due to the competition for food with livestock and also causing soil erosion. As a result, plateau zokor has been the target of widespread poisoning or trapping campaigns designed to control or eliminate it since 1970s. But there is little research on the effect of plateau zokor on plant diversity in alpine rangelands. Therefore, objectively evaluating the positive effects of the plateau zokors disturbance on their living environment and plant communities is of great significance to understand the function of plateau zokor in alpine ecosystem. Methods Here, we selected three rangelands (alpine meadow, alpine steppe and alpine shrub meadow) in which plateau zokors are typically distributed on the Tibetan Plateau, and five zokor mound density gradients were selected in each rangeland type to study the effects of the mounds on soil moisture and temperature related to plant species diversity. Results The results showed that, with the mound density increasing, the soil temperature decreased significantly in all three rangeland types, and the soil moisture significantly increased in all three rangeland types. In the alpine meadow, both the plant diversity and cumulative species richness increased significantly with increasing mound density. The increase in broad-leaved forbs is the main reason for the increase of plant diversity in the alpine meadow disturbed by zokor mounds. In the alpine steppe, the plant diversity decreased significantly with increasing mound density, while the cumulative species richness initially decreased and then increased. In the alpine shrub meadow, the plant diversity first increased and then decreased with increasing mound density as did the cumulative species richness. In conclusion, plateau zokor mounds dominated the distribution of soil moisture and temperature and significantly affected plant diversity in these three rangelands on Tibetan Plateau; the results further deepen our understanding toward a co-evolved process.

Funder

Fostering Foundation for the Excellent Ph.D. Dissertation of Gansu Agricultural University

National key research and development program

The Discipline construction fund project of Gansu Agricultural University

Synergy Innovation Team Program funded by Gansu Education Department

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3