A behavioral and genetic study of multiple paternity in a polygamous marine invertebrate, Octopus oliveri

Author:

Ylitalo Heather1,Oliver Thomas A.2,Fernandez-Silva Iria13,Wood James B.1,Toonen Robert J.1

Affiliation:

1. Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI, United States of America

2. Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America

3. Department of Genetics, Biochemistry and Immunology, University of Vigo, Vigo, Spain

Abstract

Octopus oliveri is a widespread and common rocky intertidal cephalopod that mates readily in the laboratory, but for which mating behavior has not been reported previously. Four sets of behavioral experiments were recorded wherein three males, small, medium & large in varying order, were introduced to each of six females, for a total of 24 individual females and 12 individual males utilized in the experiments. Video analysis shows that successful mating occurred in each of the mount, reach and beak-to-beak positions. Mating was observed for all males, regardless of size relative to the female, or order of introduction. Females showed preference for the first male to which they were introduced in experimental pairings rather than any specific male trait, and mating time increased significantly with increasing female size. Five novel microsatellite markers were developed and used to test paternity in the eleven broods resulting from these experimental pairings. We found skewed paternity in each brood, with early male precedence and male size being the best predictors of parentage. Multiple paternity was observed in every experimental cross but was estimated to be comparatively low in the field, suggesting that sperm limitation might be common in this species. We saw no evidence of direct sperm competition in Octopus oliveri, but larger males produced significantly more offspring. This study contributes to the growing research on cephalopod mating systems and indicates that octopus mating dynamics might be more variable and complex than thought previously.

Funder

NOAA National Marine Sanctuaries Program award

European Union’s Seventh Framework Programme

REA

FELLOWSEA: Campus do Mar International Fellowship Program

University of Hawai‘i, Department of Biology Edmondson Grant

National Science Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3