Actuopaleoichnology of a modern Bay of Fundy macro-tidal flat: analogy with a Mississippian tidal flat deposit (Hartselle Sandstone) from Alabama

Author:

Zachos Louis G.123ORCID,Platt Brian F.23ORCID

Affiliation:

1. Institut für Evolutionsbiologie und Ökologie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany

2. Department of Geology & Geological Engineering, University of Mississippi, University, MS, USA

3. Center for Biodiversity & Conservation Research, University of Mississippi, University, MS, USA

Abstract

Trace fossil zonation in the Hartselle Sandstone of Mississippian age (Chesterian: Visean-Serpukhovian) exposed on Fielder Ridge, Alabama is compared with modern macro-tidal flat ichnocoenoses on the Bay of Fundy at Lubec, Maine, and demonstrated to be analogous by sedimentologic and ichnotaxonomic criteria. The modern flat has minimal influence from either waves or freshwater influx, and can be divided into five distinct ichnocoenoses, characterized by surface traces (epichnia) and four sedimentologic facies defined by gross grain texture or hydrodynamic characteristics, but lacking significant surface traces. Several characteristics of tidal flat deposits in a fetch-limited, marine (i.e., non-estuarine), meso- to macro-tidal regime can be used to recognize similar environments as old as the late Paleozoic. These criteria include (1) limited influence of wind and waves on the depositional environment, (2) lack of significant freshwater influence and therefore any persistent brackish environments, (3) a distinct spatial distribution of microenvironments defined by substrate and exposure period, (4) high diversity of epichnial traces directly associated with microenvironments across the tidal flat, (5) generally low degree of reworking of traces by bioturbation but high degree of reworking by tidal currents, and (6) preservation of traces of predation and scavenging behavior on an exposed surface. These features, together with the regional depositional pattern of the Hartselle Sandstone interpreted as tide-influenced bars and shoals, support a meso- to macro-tidal interpretation of the depositional environment.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference98 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3