Identification of RyR2-PBmice and the effects of transposon insertional mutagenesis of the RyR2 gene on cardiac function in mice

Author:

Wang Qianqian1,Wang Chao1,Wang Bo1,Shen Qirui2,Qiu Leilei1,Zou Shuaijun1,Wang Tao3,Liu Guoyan1,Wang Beilei1,Zhang Liming1

Affiliation:

1. Department of Marine Biotechnology, Faculty of Naval Medicine, Navy Medical University, Shanghai, China

2. School of Life Sciences, China Jiliang University, Hangzhou, China

3. Department of Nuclear Medicine, Changhai Hospital, Navy Medical University, Shanghai, China

Abstract

Ryanodine receptor 2 (RyR2) plays an important role in maintaining the normal heart function, and mutantions can lead to arrhythmia, heart failure and other heart diseases. In this study, we successfully identified a piggyBac translocated RyR2 gene heterozygous mouse model (RyR2-PBmice) by tracking red fluorescent protein (RFP) and genotyping PCR. Cardiac function tests showed that there was no significant difference between the RyR2-PBmice and corresponding wild-type mice (WTmice), regardless of whether they were in the basal state or injected with epinephrine and caffeine. However, the sarcoplasmic reticulum Ca2+ content was significantly reduced in the cardiomyocytes of RyR2-PBmice as assessed by measuring caffeine-induced [Ca2+]i transients; the cardiac muscle tissue of RyR2-PBmice displayed significant mitochondrial swelling and focal dissolution of mitochondrial cristae, and the tissue ATP content in the RyR2-PBmice heart was significantly reduced. To further analyze the molecular mechanism behind these changes, we tested the expression levels of related proteins using RT-PCR and Western blot analyses. The mRNA level of RyR2 in RyR2-PBmice cardiac tissue decreased significantly compared with the WTmice, and the protein expression associated with the respiratory chain was also downregulated. These results suggested that the piggyBac transposon inserted into the RyR2 gene substantively affected the structure and function of mitochondria in the mouse cardiomyocytes, leading to disorders of energy metabolism.

Funder

National Natural Science Foundations of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3