Quantifying and analysing the angular momentum in volleyball jump serve during the aerial phase: relationship to arm swing speed

Author:

Liu Lingjun1,Chen Zhenxiang12ORCID,Zhao Defeng1,Tan Zhizong1,Qi Yaqian1

Affiliation:

1. Shanghai Research Institute of Sports Science (Shanghai Anti-Doping Agency), Shanghai, China

2. School of Athletic Performance, Shanghai University of Sport, Shanghai, China

Abstract

Background In volleyball, the jump serve is a crucial and commonly used serving technique. Nonetheless, the angular momentum developed during the jump serve remains unexplored. The objectives of the current study were to determine the angular momentum manifesting during the airborne phase of the jump serve and to analyse the correlations between the angular momentum variables and arm swing speed. Methods Three-dimensional coordinate data were obtained during the jump serves of 17 professional male volleyball players. Correlation and linear regression analyses were used to identify the angular momentum variables linked to the arm swing speed at ball impact (BI). Results The arm swing speed at BI exhibited significant correlations with the peak angular momentum of the attack arm (r = 0.551, p = 0.024), non-attack arm (r = 0.608, p = 0.011), non-attack leg (r = −0.516, p = 0.034), forearm (r = 0.527, p = 0.032), and hand (r = 0.824, p < 0.001). A stepwise regression model (R2 = 0.35, p = 0.043) predicted arm swing speed based on the peak angular momentum of the non-attack leg, forearm, and hand. Conclusions The study results suggest that during the arm-acceleration phase, (1) increasing angular momentum with the non-attack leg helps maintain aerial body balance, thereby enhancing arm swing execution, and (2) controlling the magnitude and timing of the force exerted by the elbow and wrist is crucial for effectively transmitting angular momentum, contributing to an increase in arm swing speed.

Funder

Shanghai Municipal Science and Technology Commission

Shanghai Sports Science and Technology Program

Research Initiation Foundation Program

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3