Artificial substrata increase pond farming density of grass carp (Ctenopharyngodon idella) by increasing the bacteria that participate in nitrogen and phosphorus cycles in pond water

Author:

Li Zhifei12,Wang Guangjun12,Yu Ermeng12,Zhang Kai12,Yu Deguang12,Gong Wangbao12,Xie Jun12

Affiliation:

1. Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China

2. Guangdong Ecological Remediation of Aquaculture Pollution Research Center, Guangzhou, China

Abstract

Aquaculture has become a primary method to produce various aquatic products, and intensive aquaculture technologies have become commercially important. To improve the efficiency of intensive aquaculture per unit area without reducing the growth rate of cultured fish, the present study explored the potential of artificial substrata in ponds. Our results showed that the concentrations of total nitrogen (TN) and total phosphorous (TP) in the ponds with different stocking densities of grass carp were lower than those in the control group in most cases. Further, the feed conversion rate of grass carp was significantly reduced by introducing these artificial substrata, and the culture density could be significantly increased without reducing the growth rates of these fish. Artificial substrata also significantly enriched specific bacteria and changed the structure of the microbiota in pond water. The relative abundance of Proteobacteria was significantly increased, and bacteria closely related to N and P cycles, such asHyphomicrobium,Chitinimonas,Legionella,Shewanella,Roseiflexus, andPlanktothrixwere significantly enhanced. These results showed that the artificial substratum could increase TN and TP removal in aquaculture pond water by enriching N and P cycle-related bacteria, thus significantly increasing the specific growth rate of grass carp and significantly reducing their feed conversion rate. Finally, the stocking density of grass carp and the yield per unit area of pond could be increased without reducing the growth rate.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province, China

Natural Science Foundation of Guangdong Province, China

Modern Agro-industry Technology Research System

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3