Testing the habituation assumption underlying models of parasitoid foraging behavior

Author:

Abram Paul K.1,Cusumano Antonino23,Abram Katrina1,Colazza Stefano2,Peri Ezio2

Affiliation:

1. Université de Montréal, Institut de Recherche en Biologie Végétale, Montréal, Canada

2. Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy

3. Department of Entomology, Wageningen University, Wageningen, The Netherlands

Abstract

BackgroundHabituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of parasitoid behavioral strategies. However, parasitoid behavioral responses to host cues have not previously been tested for the known, specific characteristics of habituation.MethodsIn the laboratory, we tested whether the foraging behavior of the egg parasitoidTrissolcus basalisshows specific characteristics of habituation in response to consecutive encounters with patches of host (Nezara viridula) chemical contact cues (footprints), in particular: (i) a training interval-dependent decline in response intensity, and (ii) a training interval-dependent recovery of the response.ResultsAs would be expected of a habituated response, wasps trained at higher frequencies decreased their behavioral response to host footprints more quickly and to a greater degree than those trained at low frequencies, and subsequently showed a more rapid, although partial, recovery of their behavioral response to host footprints. This putative habituation learning could not be blocked by cold anesthesia, ingestion of an ATPase inhibitor, or ingestion of a protein synthesis inhibitor.DiscussionOur study provides support for the assumption that diminishing responses of parasitoids to chemical indicators of host presence constitutes habituation as opposed to sensory fatigue, and provides a preliminary basis for exploring the underlying mechanisms.

Funder

Fonds de Recherche du Québec/Québec Centre for Biodiversity Science International Internship

Natural Sciences and Engineering Research Council of Canada

Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)

INVASIoN

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3