Mysterious inhibitory cell regulator investigated and found likely to be secretogranin II related

Author:

Hart John E.1ORCID,Clarke Iain J.2,Risbridger Gail P.3ORCID,Ferneyhough Ben4,Vega-Hernández Mónica5

Affiliation:

1. Endocrine Pharmaceuticals, Tadley, Hampshire, UK

2. Department of Physiology, Neuroscience Program, Monash Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia

3. Department of Anatomy and Developmental Biology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia

4. Systems Biology Laboratory UK, Abingdon, Oxfordshire, UK

5. Department of Zoology, Lawrence Laboratory, University of Cambridge, Cambridge, Cambridgeshire, UK

Abstract

In the context of a hunt for a postulated hormone that is tissue-mass inhibiting and reproductively associated, there is described probable relatedness to a granin protein. A 7–8 kDa polypeptide candidate (gels/MS) appeared in a bioassay-guided fractionation campaign involving sheep plasma. An N-terminal sequence of 14 amino acids was obtained for the polypeptide by Edman degradation. Bioinformatics and molecular biology failed to illuminate any ovine or non-ovine protein which might relate to this sequence. The N-terminal sequence was synthesized as the 14mer EPL001 peptide and surprisingly found to be inhibitory in an assay in vivo of compensatory renal growth in the rat and modulatory of nematode fecundity, in line with the inhibitory hormone hypothesis. Antibodies were raised to EPL001 and their deployment upheld the hypothesis that the EPL001 amino acid sequence is meaningful and relevant, notwithstanding bioinformatic obscurity. Immunohistochemistry (IHC) in sheep, rodents and humans yielded staining of seeming endocrine relevance (e.g. hypothalamus, gonads and neuroendocrine cells in diverse tissues), with apparent upregulation in certain human tumours (e.g. pheochromocytoma). Discrete IHC staining in Drosophila melanogaster embryo brain was seen in glia and in neuroendocrine cells, with staining likely in the corpus cardiacum. The search for the endogenous antigen involved immunoprecipitation (IP) followed by liquid chromatography and mass spectrometry (LC–MS). Feedstocks were PC12 conditioned medium and aqueous extract of rat hypothalamus—both of which had anti-proliferative and pro-apoptotic effects in an assay in vitro involving rat bone marrow cells, which inhibition was subject to prior immunodepletion with an anti-EPL001 antibody—together with fruit fly embryo material. It is concluded that the mammalian antigen is likely secretogranin II (SgII) related. The originally seen 7–8 kDa polypeptide is suggested to be a new proteoform of secretogranin II of ∼70 residues, SgII-70, with the anti-EPL001 antibody seeing a discontinuous epitope. The fly antigen is probably Q9W2X8 (UniProt), an uncharacterised protein newly disclosed as a granin and provisionally dubbed macrogranin I (MgI). SgII and Q9W2X8 merit further investigation in the context of tissue-mass inhibition.

Funder

Wellcome Trust via a Wellcome Trust Investigator Award to Peter Lawrence

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3