Seasonal variations in leaf and branch trace elements and the influence of a 3-yr 100% rainfall exclusion on Pinus massoniana Lamb

Author:

Lin Tian12,Zheng Xuanmei3,Zheng Huaizhou2

Affiliation:

1. Fujian University of Technology, School of Ecological Environment and Urban Construction, Fuzhou, Fujian, China

2. Fujian Normal University, Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, Fujian, China

3. Fujian Jiangxia University, Straits College of Finance and Economics, Fuzhou, Fujian, China

Abstract

Background Trace elements are essential for the growth and survival of plants, and their concentrations and distributions in plants are effective reflections of ecological adaptation strategies. However, this aspect has seldom been addressed. Method Changes in the leaf and branch trace elements of Pinus massoniana Lamb, induced by seasonal dynamics and in response to a 3-yr 100% rainfall exclusion, were evaluated. Results The results showed that the concentrations of Fe, Cu, Zn, Cd, Ni and Cr in leaves of P. massoniana in the control group had high seasonal resolution. There were three groups according to their patterns over the growing season: (1) nutrient elements (Cu, Zn, Ni and Cd), which continuously decreased in concentration during the growing season, with the highest concentration in spring and the lowest in autumn; (2) accumulating element (Cr), which increased in concentration from spring to autumn; and (3) indifferent element (Fe), which increased in concentration from spring to summer and decreased in concentration from summer to autumn. The concentrations of trace elements in leaves and branches showed no significant differences with mild drought stress, except for Fe and Cr in leaves and Cr in branches, which significantly increased (p < 0.05) under the result of self-selection under mild drought stress. Therefore, the resultant seasonal and drought effects on trace element cycling in P. massoniana could provide theoretical support to respond to future climate change.

Funder

National Nature Science Foundation of China

Educational Research Projects for Young and Mid-aged Teachers in Fujian Province of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3