Linking diffuse radiation and ecosystem productivity of a desert steppe ecosystem

Author:

Li Cheng12,Jia Xin12,Ma Jingyong12,Liu Peng12,Yang Ruizhi12,Bai Yujie12,Hayat Muhammad12,Liu Jinglan3,Zha Tianshan12

Affiliation:

1. Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, China

2. Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China

3. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China

Abstract

Radiation components have distinct effects on photosynthesis. In the desert steppe ecosystem, the influence of diffuse radiation on carbon fixation has not been thoroughly explored. We examined this diffusion and its effect on ecosystem productivity was examined during the growing season from 2014 to 2015 on the basis of eddy covariance measurements of CO2 exchange in a desert steppe ecosystem in northwest China. Our results indicated that the gross ecosystem production (GEP) and diffuse photosynthetically active radiation (PARdif) peaked when the clearness index (CI) was around 0.5. The maximum canopy photosynthesis (Pmax) under cloudy skies (CI < 0.7) was 23.7% greater than under clear skies (CI ≥ 0.7). When the skies became cloudy in the desert steppe ecosystem, PARdif had a greater effect on GEP. Additionally, lower vapor pressure deficits (VPD ≤ 1 kPa), lower air temperatures (Ta ≤ 20 °C), and non-stressed water conditions (REW ≥ 0.4) were more conducive for enhanced ecosystem photosynthesis under cloudy skies than under clear skies. This may be due to the comprehensive effects of VPD and Ta on stomatal conductance. We concluded that cloudiness can influence diffuse radiation components and that diffuse radiation can increase the ecosystem production of desert steppe ecosystems in northwest China.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Beijing Municipal Science & Technology Commission

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3