Amelioration of drought effects in wheat and cucumber by the combined application of super absorbent polymer and potential biofertilizer

Author:

Li Yongbin1,Shi Haowen1,Zhang Haowei1,Chen Sanfeng1

Affiliation:

1. State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China

Abstract

Biofertilizer is a good substitute for chemical fertilizer in sustainable agriculture, but its effects are often hindered by drought stress. Super absorbent polymer (SAP), showing good capacity of water absorption and retention, can increase soil moisture. However, limited information is available about the efficiency of biofertilizer amended with SAP. This study was conducted to investigate the effects of synergistic application of SAP and biofertilizers (Paenibacillus beijingensis BJ-18 and Bacillus sp. L-56) on plant growth, including wheat and cucumber. Potted soil was treated with different fertilizer combinations (SAP, BJ-18 biofertilizer, L-56 biofertilizer, BJ-18 + SAP, L-56 + SAP), and pot experiment was carried out to explore its effects on viability of inoculants, seed germination rate, plant physiological and biochemical parameters, and expression pattern of stress-related genes under drought condition. At day 29 after sowing, the highest viability of strain P. beijingensis BJ-18 (264 copies ng−1 gDNA) was observed in BJ-18 + SAP treatment group of wheat rhizosphere soil, while that of strain Bacillus sp. L-56 (331 copies ng−1 gDNA) was observed in the L-56 + SAP treatment group of cucumber rhizosphere soil. In addition, both biofertilizers amended with SAP could promote germination rate of seeds (wheat and cucumber), plant growth, soil fertility (urease, sucrose, and dehydrogenase activities). Quantitative real-time PCR analysis showed that biofertilizer + SAP significantly down-regulated the expression levels of genes involved in ROS scavenging (TaCAT, CsCAT, TaAPX, and CsAPX2), ethylene biosynthesis (TaACO2, CsACO1, and CsACS1), stress response (TaDHN3, TaLEA, and CsLEA11), salicylic acid (TaPR1-1a and CsPR1-1a), and transcription activation (TaNAC2D and CsNAC35) in plants under drought stress. These results suggest that SAP addition in biofertilizer is a good tactic for enhancing the efficiency of biofertilizer, which is beneficial for plants in response to drought stress. To the best of our knowledge, this is the first report about the effect of synergistic use of biofertilizer and SAP on plant growth under drought stress.

Funder

National Key Research and Development Program of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3