Analysis of genetic population structure and diversity in Mallotus oblongifolius using ISSR and SRAP markers

Author:

Yan Wuping1,Li Juanling1ORCID,Zheng Daojun2,Friedman Cynthia3ORCID,Wang Huafeng1

Affiliation:

1. Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China

2. Institute of Tropical Horticulture, Hainan Academy of Agricultural Sciences, Haikou, China

3. The Department of Biological and Environmental Sciences, Concordia University of Edmonton, Edmonton, Canada

Abstract

Background Mallotus oblongifolius, an evergreen shrub endemic to Hainan Island, China, is important both medicinally and economically. Due to its special medicinal significance and the continuing rise of market demand, its populations in the wild have been subject to long-term illegal and unrestrained collection. Hence, an evaluation of genetic variability is essential for the conservation and genetic reserve development of this species. Methods Sequence-related amplified polymorphism (SRAP) and inter-simple sequence repeat (ISSR) markers were employed to assess the genetic diversity and genetic structure of 20 natural populations of M. oblongifolius growing in different eco-geographical regions of Hainan Island, China. Results We revealed a considerable genetic diversity (h = 0.336, I = 0.5057, SRAP markers; h = 0.3068, I = 0.4657, ISSR markers) and weak genetic differentiation (Gst = 0.2764 for SRAP, Gst = 0.2709 for ISSR) with the same gene flow (Nm = 1.3092 for SRAP, Nm = 1.346 for ISSR) among the M. oblongifolius populations. The Mantel Test showed that the distribution of genetic variation among populations could not be explained by the pronounced geographical distances (r = 0.01255, p = 0.5538). All results of the Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbor-joining (NJ), Principal Coordinate Analysis (PCoA) and Bayesian analyses supported a habitat-specific genetic clustering model for M. oblongifolius, indicating a local adaptive divergence for the studied populations. Discussion We suggested that the habitat fragmentation and specificity for M. oblongifolius populations weakened the natural gene flow and promoted an adaptation to special habitats, which was the main reason for local adaptive divergence among M. oblongifolius.

Funder

National Natural Science Foundation of China

Start-up fund from Hainan University

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3