Influence of adiposity and fatigue on the scapular muscle recruitment order

Author:

Mendez-Rebolledo Guillermo12,Guzman-Muñoz Eduardo1,Ramírez-Campillo Rodrigo3,Valdés-Badilla Pablo4,Cruz-Montecinos Carlos5,Morales-Verdugo Juan1,Berral de la Rosa Francisco Jose2

Affiliation:

1. Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Chile

2. Universidad Pablo de Olavide, Seville, Spain

3. Laboratory of Human Performance, Quality of Life and Wellness Research Group, Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile

4. Institute of Physical Activity and Health, Universidad Autónoma de Chile, Temuco, Chile

5. Department of Physical Therapy, Laboratory of Clinical Biomechanics, Faculty of Medicine, University of Chile, Santiago, Chile

Abstract

Background Several authors have indicated that excess body weight can modify the electromyographic (EMG) amplitude due to the accumulation of subcutaneous fat. This accumulation of adipose tissue around the muscle would affect the metabolic capacity during functional activities. On the other hand, some authors have not observed differences in the myoelectric manifestations of fatigue between normal weight and obese people. Furthermore, these manifestations have not been investigated regarding EMG onset latency, which indicates a pattern of muscle activation between different muscles. The objective of this study was to determine whether an increase in body weight, skinfolds, and muscle fatigue modify the trapezius and serratus anterior (SA) onset latencies and to determine the scapular muscle recruitment order in fatigue and excess body weight conditions. Methods This cross-sectional study was carried out in a university laboratory. The participants were randomly assigned to the no-fatigue group (17 participants) or the fatigue (17 participants) group. The body mass index, skinfold thickness (axillary, pectoral, and subscapular), and percentage of body fat were measured. In addition, the onset latency of the scapular muscles [lower trapezius (LT), middle trapezius (MT), upper trapezius (UT), and SA] was assessed by surface EMG during the performance of a voluntary arm raise task. A multiple linear regression model was adjusted and analyzed for the additive combination of the variables, percentage body fat, skinfold thickness, and fatigue. The differences in onset latency between the scapular muscles were analyzed using a three-way repeated measure analysis of variance. In all the tests, an alpha level <0.05 was considered statistically significant. Results For the MT, LT, and SA onset latencies, the body mass index was associated with a delayed onset latency when it was adjusted for the additive combination of percentage of body fat, skinfold thickness, and fatigue. Of these adjustment factors, the subscapular skinfold thickness (R2 = 0.51; β = 10.7; p = 0.001) and fatigue (R2 = 0.86; β = 95.4; p = 0.001) primarily contributed to the increase in SA onset latency. A significant muscle ×body mass index ×fatigue interaction (F = 4.182; p = 0.008) was observed. In the fatigue/excess body weight condition, the UT was activated significantly earlier than the other three scapular muscles (p < 0.001) and SA activation was significantly delayed compared to LT (p < 0.001). Discussion Excess body weight, adjusted for skinfold thickness (axillary and subscapular) and fatigue, increases the onset latency of the MT, LT, and SA muscles and modifies the recruitment order of scapular muscles. In fact, the scapular stabilizing muscles (MT, LT, and SA) increase their onset latency in comparison to the UT muscle. These results were not observed when excess body weight was considered as an individual variable or when adjusted by the percentage body fat.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference53 articles.

1. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions;Adam;Journal of Neurophysiology,2003

2. Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity;Addison;Journal of Nutrition, Health and Aging,2014

3. Role of phosphate and calcium stores in muscle fatigue;Allen;The Journal of Physiology,2001

4. The role of action in postural preparation for loading and unloading in standing subjects;Aruin;Experimental Brain Research,2001

5. The effect of skinfold on the assessment of the mean power frequency at the fatigue threshold;Baniqued;International Journal of Exercise Science,2016

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3