Abstract
The continued and general rise of antibiotic resistance in pathogenic microbes is a well-recognized global threat. Host defense peptides (HDPs), a component of the innate immune system have demonstrated promising potential to become a next generation antibiotic effective against a plethora of pathogens. While the effectiveness of antimicrobial HDPs has been extensively demonstrated in experimental studies, theoretical insights on the mechanism by which these peptides function is comparably limited. In particular, experimental studies of AMP mechanisms are limited in the number of different peptides investigated and the type of peptide parameters considered. This study makes use of the random forest algorithm for classifying the antimicrobial activity as well for identifying molecular descriptors underpinning the antimicrobial activity of investigated peptides. Subsequent manual interpretation of the identified important descriptors revealed that polarity-solubility are necessary for the membrane lytic antimicrobial activity of HDPs.
Funder
Center of Excellence on Medical Biotechnology (CEMB), S&T Postgraduate Education and Research Development Office (PERDO), Office of Higher Education Commission (OHEC), Thailand
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献