Ambulatory sleep scoring using accelerometers—distinguishing between nonwear and sleep/wake states

Author:

Barouni Amna1,Ottenbacher Jörg1,Schneider Johannes2,Feige Bernd3,Riemann Dieter3,Herlan Anne3,El Hardouz Driss4,McLennan Darren1

Affiliation:

1. movisens GmbH, Karlsruhe, Germany

2. FZI Research Center for Information Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany

3. Department of Psychiatry and Psychotherapy, University Medical Center Freiburg, Freiburg, Germany

4. Institute for Information Processing Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

Background Differentiating nonwear time from sleep and wake times is essential for the estimation of sleep duration based on actigraphy data. To efficiently analyze large-scale data sets, an automatic method of identifying these three different states is required. Therefore, we developed a classification algorithm to determine nonwear, sleep and wake periods from accelerometer data. Our work aimed to (I) develop a new pattern recognition algorithm for identifying nonwear periods from actigraphy data based on the influence of respiration rate on the power spectrum of the acceleration signal and implement it in an automatic classification algorithm for nonwear/sleep/wake states; (II) address motion artifacts that occur during nonwear periods and are known to cause misclassification of these periods; (III) adjust the algorithm depending on the sensor position (wrist, chest); and (IV) validate the algorithm on both healthy individuals and patients with sleep disorders. Methods The study involved 98 participants who wore wrist and chest acceleration sensors for one day of measurements. They spent one night in the sleep laboratory and continued to wear the sensors outside of the laboratory for the remainder of the day. The results of the classification algorithm were compared to those of the reference source: polysomnography for wake/sleep and manual annotations for nonwear/wear classification. Results The median kappa values for the two locations were 0.83 (wrist) and 0.84 (chest). The level of agreement did not vary significantly by sleep health (good sleepers vs. subjects with sleep disorders) (p = 0.348, p = 0.118) or by sex (p = 0.442, p = 0.456). The intraclass correlation coefficients of nonwear total time between the reference and the algorithm were 0.92 and 0.97 with the outliers and 0.95 and 0.98 after the outliers were removed for the wrist and chest, respectively. There was no evidence of an association between the mean difference (and 95% limits of agreement) and the mean of the two methods for either sensor position (wrist p = 0.110, chest p = 0.164), and the mean differences (algorithm minus reference) were 5.11 [95% LoA −15.4–25.7] and 1.32 [95% LoA −9.59–12.24] min/day, respectively, after the outliers were removed. Discussion We studied the influence of the respiration wave on the power spectrum of the acceleration signal for the differentiation of nonwear periods from sleep and wake periods. The algorithm combined both spectral analysis of the acceleration signal and rescoring. Based on the Bland-Altman analysis, the chest-worn accelerometer showed better results than the wrist-worn accelerometer.

Funder

German Federal Ministry of Education and Research

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3